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Abstract: Our main objective is to study how braneworld models of higher codimension

differ from the 5D case and traditional Kaluza-Klein compactifications. We first derive

the classical dynamics describing the physical fluctuations in a wide class of models in-

corporating gravity, non-Abelian gauge fields, the dilaton and two-form potential, as well

as 3-brane sources. Next, we use these results to study braneworld compactifications in

6D supergravity, focusing on the bosonic fields in the minimal model; composed of the

supergravity-tensor multiplet and the U(1) gauge multiplet whose flux supports the com-

pactification. For unwarped models sourced by positive tension branes, a harmonic analysis

allows us to solve the large, coupled, differential system completely and obtain the full 4D

spin-2,1 and 0 particle spectra, establishing (marginal) stability and a qualitative behaviour

similar to the smooth sphere compactification. We also find interesting results for models

with negative tension branes; extra massless Kaluza-Klein vector fields can appear in the

spectra, beyond those expected from the isometries in the internal space. These fields

imply an enhanced gauge symmetry in the low energy 4D effective theory obtained by

truncating to the massless sector, which is explicitly broken as higher modes are excited,

until the full 6D symmetries are restored far above the Kaluza-Klein scale. Remarkably,

the low energy effective theory does not seem to distinguish between a compactification on

a smooth sphere and these singular, deformed spheres.
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1 Introduction

Almost two decades on, branes are evermore ubiquitous in the models constructed to under-

stand particle physics and cosmology, with all their How?’s and Why?’s. As fundamental

objects, they are the D-branes and NS-branes (or M-branes) of string (or M) theory, but

within a low-energy effective field theory description, they are introduced as braneworlds.

Often these braneworlds are considered as infinitely thin but finite tension objects, like for

their more fundamental cousins, although sometimes it proves necessary to resolve their

structure by adding some thickness.

A codimension one brane necessarily forms a boundary in the bulk space, since there

is no path which can lead from one side to the other without traversing the brane. The

gravitational backreaction of these objects is well understood; whilst the metric is contin-

uous across the brane, its first derivative can have finite discontinuities. Branes with more

than one transverse dimension are qualitatively different, and much harder, due to their

sourcing of singularities in the transverse space. Still, codimension two branes can also be

handled with some control; they backreact on the geometry in such a way as to produce

relatively mild conical singularities.

The construction of solutions sourced by branes, with up to two codimensions, in

various field theory models is by now a well-developed art. In 5D, the archetype is of

course the construction of Randall and Sundrum [1, 2]. In 6D, we take the general warped

braneworld compactifications (“conical-GGP solutions”) of 6D N=1 gauged supergravity [3]

found in [4, 5] as representative. These solutions additionally invoke fluxes, which are also

playing a dominant role in string compactifications today, and indeed models with two

extra dimensions are the simplest in which flux compactifications can be studied. Having

established the solutions, we can begin to ask about their physics: Are they stable to small

perturbations? What are the symmetries and particle content of the low energy effective

field theory? Is it chiral? What are the modifications to 4D Einsteinian gravity? What

would be the effective vacuum energy measured by a 4D observer? What role do the branes

play in these and other phenomena? And so on.

The first step towards answering these questions is to analyze the classical spectra of

small fluctuations around the solution. A number of such studies have been made recently

for the conical-GGP solutions. In [6] we worked out the spectra for certain 4D gauge fields

and fermions present in the model and no tachyons or ghosts were found amongst them. A

similar (marginal) stability was found in [7], where the axially symmetric modes for some

of the scalar perturbations were calculated. The spectrum for the gravitino has also been

analyzed in [8]. In [9], meanwhile, we studied the tachyonic instabilities that can arise

from the non-axially symmetric, 4D scalar fluctuations descending from 6D gauge fields,

– 1 –
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and charged under the background fluxes.1 Whether a given model with a given flux suffers

from this instability turns out to depend on the tensions of the branes present.

We now intend to complete the spectral analysis for the bosonic fluctuations about

the braneworld solutions of 6D supergravity. Our particular focus in this paper is on the

so-called Salam-Sezgin sector — that arising from the supergravity-tensor multiplet and

the U(1) gauge multiplet in which the background monopole lies — which was partially

treated in [7, 11]. The remaining sectors have been completed elsewhere [6, 9]. We will

calculate the corresponding spectra for the 4D spin-2 and — for unwarped backgrounds —

spin-1 and spin-0 fields. The model that we are studying is complicated, and technically

difficult. However, this goes hand in hand with its advantage of generality, and indeed the

results for several simpler scenarios can be extracted from our work at its various stages.

Our approach will be that established in [12], where a formalism was developed to

analyze the spectra of small perturbations about arbitrary solutions of Einstein, Yang-

Mills and scalar systems. The first part of this paper can be considered as a generalization

of that work, where we now include the presence of thin source 3-branes and extra bulk

fields that are generically present in supergravity theories; the dilaton and anti-symmetric

two-form potential. With little extra cost, we actually keep the number of dimensions

transverse to the brane general.

We first derive the general form of the bilinear action that describes the behaviour of

small fluctuations. For codimension-two or higher, we include fluctuations of the brane

positions in the transverse directions, the so-called “branons”. We then apply the light-

cone gauge (for bulk fields) and static gauge (for branons) to restrict to physical degrees of

freedom, and decouple the dynamics for the spin-2, -1 and -0 fluctuations. The gauge-fixed

bilinear action thus obtained provides the starting point to calculate the Kaluza-Klein (KK)

spectra for the conical-GGP solutions, as well as, for example, the 5D Randall-Sundrum

models and the non-supersymmetric Einstein-Yang Mills(-dilaton) model in any dimension.

In the second part of this paper, we use these general equations to study the behaviour

of braneworld models in 6D (along the way also recover some of well-known aspects of

the 5D scenarios). Here, since we include the backreaction of the branes, the dynamics

of the branons are not well-defined.2 Therefore, to study the spin-0 sector, we choose to

truncate the branons by e.g. placing the branes at orbifold fixed points, or taking the brane

tensions to be very large making the branes rigid within our range of validity. Meanwhile,

the conical singularities in the curvature that are induced by the codimension two branes

do not prevent us from understanding the behaviour of the bulk fluctuations.

We are able to derive the spectrum for the 4D spin-2 fields in the model’s full warped

generality. The spin-1 and spin-0 sectors present large coupled differential systems, and

by finding a set of harmonics on the 2D internal space ( the “rugbyball”), we are also

able to solve these systems analytically for the unwarped case. In this way, we obtain

all the 4D modes for unwarped compactifications with positive tension brane sources, and

1The end point of this instability is studied in [10].
2Indeed, the behaviour of the branons is usually considered under the probe brane approximation, in

which the brane tension is much smaller than the bulk gravitational scale, so that the backreaction can be

neglected [13, 14].

– 2 –
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qualitatively, we observe the same behaviour as in the smooth sphere compactification

without branes — including marginal stability.

In the presence of negative tension codimension-two branes, meanwhile, the physics

can surprise. Here, despite the fact that brane sources clearly break the SU(2) isometries of

the sphere to U(1), three massless spin-1 fields3 can be found amongst the KK spectra for

special values of the conical deficit angle. These special deficit angles, δ = −2π,−4π, . . . ,

allow three Killing vectors to be well-defined everywhere outside the branes, although only

one of them can be globally integrated to an isometry.

Whether or not the massless vectors are gauge bosons of an enhanced gauge symmetry

in the 4D theory can be understood by going beyond bilinear order and considering the

interaction terms. We find the presence of KK modes that are not in well-defined repre-

sentations of the SU(2) generated by the Killing vectors, and therefore the full 4D theory

does not enjoy an SU(2) gauge symmetry. For this reason, we do not expect the classical

masslessness of the vector fields to survive quantum corrections. Meanwhile, all our bosonic

massless modes do fall into well-defined SU(2) representations, and therefore we argue that

the classical low energy 4D effective field theory — obtained by truncating to the massless

sector — does enjoy an enhanced KK gauge symmetry beyond the isometries! Moreover,

it appears that the low energy theory does not distinguish between compactifications on

the smooth sphere and these singular, deformed spheres.

Let us now give an outline for the remainder of the paper. The first part presents a

rather general analysis that determines the dynamics of perturbations in braneworld com-

pactifications. In the next section, we introduce the model (both theories and background

solutions) and discuss the scenarios to which our analysis can be applied. In section 3,

we introduce the perturbations about the background, obtain the bilinear action that de-

scribes their dynamics, and discuss the local symmetries of this action. In section 4, we

use these symmetries to fix to the “light cone static gauge”, and give the bilinear action in

this gauge, in which the different spin sectors decouple.

Then begins the second part, which uses the previous results to study the 4D fields

that emerge in various scenarios. In section 5, our main interest is in the braneworld

solutions of 6D supergravity, but we also discuss a non-supersymmetric 6D model and the

5D Randall-Sundrum models. In the main text we present the KK spectra for spin-2 and

spin-1 fields and identify the massless spin-0 fields; the complete spin-0 sector can be found

in the appendices. Finally, we understand in detail the physical significance of the extra

massless 4D vector modes that can appear in the spectra, and the gauge invariance that

emerges in the 4D theory.

We summarise our results in section 6, before concluding in section 7.

2 The model

We begin with the definition of our model. The main focus of the present paper will be a

class of bosonic 6D field theories with thin codimension-two branes. In particular we are

3In addition to any massless gauge fields arising from unbroken higher dimensional gauge symmetries.
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interested in the bosonic part of 6D N=1 gauged supergravity [3]. However, throughout

the article we shall keep a general space-time dimension D as far as possible, and cer-

tain truncations of the field content allow our analysis to be applied to several different

scenarios, including the non-supersymmetric Einstein-Yang-Mills theory or the Randall-

Sundrum Model.

2.1 Field content

The basic ingredients of our model are the higher dimensional metric GMN , where the

space-time indices run over M,N, . . . = 0, . . . ,D− 1, and the gauge field AM of a compact

Lie group G. These are bulk fields in the sense that they depend on all the space-time

coordinates XM .

We also want to consider a certain number N of 3-branes embedded in the D-

dimensional space time. To do so we introduce, following ref. [15], N functions YM
k (xk), k =

1, . . . ,N , which represent the positions of the branes in the D-dimensional space time. The

xk represent the 4D coordinates on the brane, xk = {xα
k}, where α, β, . . . are the 4D in-

dices. Not all the space-time components of YM
k (xk) are physical degrees of freedom: 4

space-time components for each k can be gauged away by using the 4D (general) coordi-

nate transformation invariance acting on xk [15], as we will explicitly do in Subsection 4.1.

We consider YM
k (xk) to be a brane field because it depends only on a 4D world-volume

coordinate. These fields are important to introduce the branes in a covariant way, and

indeed we can construct the induced metrics on the branes by means of

gk
αβ = GMN (Yk(xk))∂αY

M
k (xk)∂βY

M (xk) . (2.1)

In order to complete the bosonic part of the 6D supergravity, one should add other

bulk fields in addition to GMN and AM , that is a dilaton φ and a 2-form field BMN , which

emerge from the graviton multiplet and an antisymmetric tensor multiplet [3]. We will refer

to BMN as the Kalb-Ramond field. Moreover, concerning the 6D supergravity, we shall

assume that G is a product of simple groups that include a U(1)R gauged R-symmetry. In

general one can also add some hypermultiplets [3], which turn out to be important to cancel

gauge and gravitational anomalies [16, 17]. In the bosonic sector this leads to additional

scalar fields Φα (hyperscalars) in some representation of G; however, from now on we set

Φα = 0. We do so because we are interested in the linear perturbations which mix with

the D-dimensional gravitational fluctuations hMN : indeed, for the class of backgrounds we

are interested in (see Subsection 2.3), the Φα decouple from hMN . Their inclusion should

be straightforward.

Therefore the bulk and the brane field contents that we consider are respectively:

{GMN ,AM , φ,BMN} and
{

YM
k (xk), . . .

}

. (2.2)

The dots in the second set of (2.2) represent additional brane fields that we can always

introduce, but which are not required by general covariance; for example they can be the

fields of the Standard Model (SM).

– 4 –
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2.2 The action

We split the action functional S into the bulk action SB , which depends only on the bulk

fields, and the brane action Sb that is a functional of the brane fields as well.

The bulk action is4[3]

SB =

∫

dDX
√
−G

{

1

κ2

[

R− 1

4
(∂φ)2

]

− 1

4
eφ/2F 2 − κ2

48
eφHMNPH

MNP − V(φ)

}

, (2.3)

where G is the determinant of GMN and κ is the D-dimensional Planck scale; also5 F 2 ≡
FMNF

MN and (∂φ)2 ≡ ∂Mφ∂
Mφ. The explicit expression for the gauge field strength

FMN is6

FMN = ∂MAN − ∂NAM + gAM ×AN , (2.4)

where g is the gauge coupling, which in fact represents a collection of independent gauge

couplings including that of the U(1)R subgroup, g1. HMNP is the Kalb-Ramond field

strength, which contains a Chern-Simons coupling as follows [18]:

HMNP = ∂MBNP + FMNAP − g

3
AM (AN ×AP ) + 2 cyclic perms . (2.5)

The function V(φ) is the dilaton potential. In the supersymmetric model this is fixed to

be V(φ) = 8 g2
1 e

−φ/2/κ4.

Meanwhile, we consider the following 3-brane action

Sb =
∑

k

(

−Tk

∫

d4xk

√

−gk

)

≡ −T
∫

d4x
√−g, (2.6)

where gk is the determinant of (2.1) and Tk are the tensions of the branes. From now on

(unless otherwise stated) we suppress the index k, as we have done on the right hand side

of (2.6). The reader may have noticed that we have not introduced the Gibbons-Hawking

boundary term, which is generically necessary to treat codimension one branes [19]. In-

deed, we shall apply our analysis only to those codimension one models whose branes are

placed on orbifold fixed points, in which case the Gibbons-Hawking boundary term is not

present [20].

We can summarise by saying that our analysis will apply to the following two types

of models:

1. 6D N=1 gauged supergravity.

2. Einstein-Yang-Mills theories, with a dilaton or cosmological constant Λ, for a general

space-time dimension.

4We choose signature (−, +, . . . , +), and define R R

MN S = ∂MΓR

NS −∂NΓR

MS +ΓR

MP ΓP

NS −ΓR

NP ΓP

MS and

RMN = R P

PM N .
5A trace overall is understood when we write a product of Lie algebra valued objects: e.g. in eq. (2.3)

F 2 ≡ Tr
`

F 2
´

.
6We define the cross-product as (AM × AN )I = fIJKAJ

MAK

N , with fIJK the structure constants of G:
ˆ

T I , T J
˜

= ifIJKT K , where T I are the generators of G.

– 5 –
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The second case includes, for example, the RS models [1, 2] or the non-supersymmetric

6D Einstein-Yang-Mills-Λ (EYMΛ) model [13, 21]. They can be obtained by simply fixing

the appropriate dimension and setting HMNP = 0, φ = 0 and V(0) = Λ. Even if our main

interest is in models of Type 1 we will also consider the second class for several reasons. In

this way, we will see that our results can be applied in quite general contexts, and it will

also provide interesting additional ways to check our formulae. Moreover, in the future it

should help us to figure out the role of supersymmetry in the linear perturbations.

Finally, it is important to note that the actions SB and Sb are invariant with respect

to both the D-dimensional and the 4D coordinate transformations (acting respectively on

XM and xα). We will discuss the local symmetries of the present model and an explicit

gauge fixing for the linear perturbations in Subsections 3.2 and 4.1.

2.3 The equations of motion (EOMs) and solutions

The EOMs that follow from the variation of the action SB + Sb are:

RMN − 1

2
GMNR =

κ2

2

{

eφ/2

(

FM
PF

NP − 1

4
GMNF 2

)

+
1

2κ2
∂Mφ∂Nφ

−GMN

[

1

4κ2
(∂φ)2 + V(φ)

]}

− Tκ2 BMN , (2.7)

DN

(

eφ/2FNM
)

= 0, (2.8)

1

2κ2
D2φ =

∂V
∂φ

(φ) +
1

8
eφ/2F 2, (2.9)

1√−g∂α

(√−g GMN∂
αY N

)

=
1

2
∂MGNP ∂Y N · ∂Y P , (2.10)

where we have fixed HMNP = 0, since our interest shall be in backgrounds that enjoy 4D

Poincaré invariance. Moreover, in eq. (2.9) and (2.10) we have introduced the notation

D2φ ≡ DMD
Mφ, where DM is the covariant derivative, and ∂YM · ∂Y N ≡ ∂αY

M∂αY N .

Recall also that we have suppressed the index k on YM
k , which labels each of the branes.

The last term in (2.7) represents the brane contribution to the Einstein equations, where

BMN is defined by

BMN(X) ≡ 1

2

∫

d4x
√

g/G δ(X − Y (x)) ∂YM · ∂Y N ; (2.11)

we note that the bulk quantity G in (2.11) is computed at the position of the brane

(G = G(Y )) because of the presence of the D-dimensional delta function δ(X − Y (x)).

Furthermore, since eqs. (2.10) come from the variation of the brane action with respect to

YM , there the bulk fields GMN and ∂MGNP are computed at the brane position (GMN =

GMN (Y ) and ∂MGNP = ∂MGNP (Y )).

In the present paper we will focus mainly on the following ansatz solution

– 6 –
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to (2.7)–(2.10):

Y µ = xµ, (2.12)

Y m = constant , (2.13)

ds2 = eA(ρ)ηµνdx
µdxν + dρ2 + eB(ρ)Kmn(y)dymdyn , (2.14)

A = Am(ρ, y)dym , (2.15)

φ = φ(ρ), (2.16)

HMNP = 0 , (2.17)

where µ = 0, 1, 2, 3, m = 5, . . . , 4+D2, m = (ρ,m) (we have D = 5+D2) and ym and Kmn

are respectively the coordinate and the metric on the D2-dimensional space. Eq. (2.12) is

not really an assumption because we can always use the 4D general coordinate invariance

on the branes to set (2.12). Eq. (2.13) is instead a non trivial assumption. Moreover,

in Eqs (2.14)–(2.17) we are assuming that the bulk field background has a 4D Poincaré

invariance and that the functions A, B and φ depend only on the coordinate ρ. We will

also assume A to lie in the Cartan subalgebra of Lie(G).

One of the simplest models that can be described by this set up is the Randall-Sundrum

(RS) model [1], where we have D = 5, φ = 0 and A = 0 and the internal space is S1/Z2

with two branes on the fixed points of Z2, say at ρ = 0 and ρ = πrc. The explicit form of

the solution is given by

A = −2k|ρ|, Y ρ
1 = 0, Y ρ

2 = πrc , (2.18)

where k is a positive constant. The object |ρ| in (2.18) is equal to the absolute value of ρ in

the region −πrc < ρ < πrc and its value anywhere else is obtained by periodicity. In order

for (2.18) to be a solution one needs T1 = −T2 = 12k/κ2 and Λ = −12k2/κ2. In section 5,

we shall use this very well-known solution to check the result given in section 4.

However, in this paper our main interest lies in the analysis of a class of solutions found

by Gibbons, Güven and Pope (GGP) [4] to the 6D supergravity: the general set of warped

solutions with 4D Poincaré symmetry, and axial symmetry in the transverse dimensions.

Here we give only a subset of this general class, namely that which contains singularities

no worse than conical and therefore can be sourced by brane terms of the form (2.6).

To give the explicit expression of the conical-GGP solutions, it turns out to be useful

to introduce the following radial coordinate [6]

u(ρ) ≡
∫ ρ

0
dρ′e−A(ρ′)/2, (2.19)

whose range is 0 ≤ u ≤ u ≡ πr0/2. In this frame the metric reads

ds2 = eA(u)
(

ηµνdx
µdxν + du2

)

+ eB(u) r
2
0

4
dϕ2 . (2.20)

– 7 –
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The explicit conical-GGP solutions7 are then the following particular case of the

ansatz (2.12)–(2.17) [4]:

eA = eφ/2 =

√

f1

f0
, eB = 4α2eA

cot2(u/r0)

f2
1

,

A = − 4α

qκf1
Qdϕ, (2.21)

where q and α are generic real numbers and Q is a generator of a U(1) subgroup of a simple

factor of G, satisfying Tr
(

Q2
)

= 1. Also,

f0 ≡ 1 + cot2
(

u

r0

)

, f1 ≡ 1 +
r20
r21

cot2
(

u

r0

)

, (2.22)

with r20 ≡ κ2/(2g2
1) and r21 ≡ 8/q2.

This solution is supported by two branes located at u = 0 and u = u. Indeed, as u→ 0

or u→ u, the metric tends to that of a cone, with respective deficit angles

δ = 2π

(

1 − |α| r
2
1

r20

)

and δ = 2π (1 − |α|) , (2.23)

and corresponding delta-function behaviours in the Ricci scalar. We will take α ≥ 0 without

loss of generality. The tensions of the two branes T and T are related to the deficit angle

as follows [22]:

T = 2δ/κ2 and T = 2δ/κ2. (2.24)

Unlike the RS solution, here the warp factor eA is smooth on the brane positions u = 0

and u = u. In particular we have

eA
u→0,u→ constant 6= 0, ∂ue

A u→0,u→ 0. (2.25)

By using (2.25), (2.12) and (2.13), it is also easy to check that the conical-GGP con-

figuration satisfies the Y -equations (2.10) in addition to the bulk EOMs (2.7)–(2.9).

The expression for the gauge field background in eq. (2.21) is well-defined in the limit

u → 0, but not as u → u. We should therefore use a different patch to describe the

u = u brane, and this must be related to the patch including the u = 0 brane by a single-

valued gauge transformation. This leads to a Dirac quantization condition, which for a

field interacting with A through a charge e gives

− e
4αg

κq
= −eαr1

r0

g

g1
= N , (2.26)

where N is an integer that is called monopole number and g is the gauge coupling constant

corresponding to the background gauge field. For example, if A lies in U(1)R, then g = g1.

The charge e can be computed once we have selected the background gauge group, since

it is an eigenvalue of the generator Q. Also, note that the internal space corresponding to

Solutions (2.21) has an S2 topology (its Euler number equals 2).

7The coordinate u is related to the coordinate r in [4] by r = r0 cot(u/r0).
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Finally, we observe that one can obtain the unwarped “rugbyball” compactification [21]

simply by setting r0 = r1. In this case the metric is

ds2 = ηµνdx
µdxν +

r20
4

(

dθ2 + α2 sin2 θ dϕ2
)

, (2.27)

where θ ≡ 2u/r0, and the background value of the dilaton is zero; therefore this is a

solution also to the non-supersymmetric 6D EYMΛ model. For α < 1 the deficit angle is

positive. The geometry is also well-defined when α > 1 and the deficit angle is negative; we

name these spaces “saddle-spheres” (see [9] for a detailed discussion on their properties).

Moreover, we can smoothly retrieve the sphere compactification (with radius r0/2) by

taking α = 1 in addition to r0 = r1.

3 General perturbations

The main purpose of this paper is to study the linear perturbations in the above models.

We therefore perturb the fields in (2.2) as follows:

GMN → GMN + hMN , AM → AM + VM , φ→ φ+ τ,

BMN → BMN + bMN , YM → YM + ξM . (3.1)

The first terms in the right hand sides of (3.1) represent the background quantities of the

corresponding fields. In fact, it is useful to introduce another 2-form field VMN in order

to describe the fluctuations of the Kalb-Ramond field. This can be done as follows. Since

HMNP appears only quadratically in (2.3), and HMNP = 0 at the background level due to

4D Poincaré invariance, the linear approximation (which corresponds to the bilinear level

in the action) involves only the linear perturbation of HMNP , that we denote with8 H
(1)
MNP ,

H
(1)
MNP = [d (b2 −A ∧ V ) + 2F ∧ V ]MNP , (3.2)

where we have used the notation of p-forms and b2 is the fluctuation in the Kalb-Ramond

2-form, A and F the background values of the gauge field and its field strength respectively

and V the perturbation of the gauge field. We now introduce the 2-form V2 as follows:

V2 ≡ κ (b2 −A ∧ V ) , (3.3)

whose components will be denoted by VMN . H
(1)
MNP can now be expressed in terms of V2

and V :

H
(1)
MNP =

(

1

κ
dV2 + 2γF ∧ V

)

MNP

, (3.4)

where we have introduced a new parameter γ; for γ = 1 we recover the structure of H
(1)
MNP

required by the 6D supergravity, whereas for γ = 0 the fluctuations of VMN are completely

decoupled (at the linear level) from the rest. This will allow us to treat simultaneously the

6D supergravity and the EYMΛ models.

Finally, we note that the fields ξM (x) describe the fluctuations of the brane positions,

and as such they are 4D fields.

8Since the background HMNP = 0, and the background monopole, A, lies in the Cartan subalgebra, we

see that the exterior derivative acting on the background Kalb-Ramond potential B2 must be zero. Also,

A ∧A = 0.
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3.1 Bilinear action

Here we provide the linearized theory which corresponds to the bilinear approximation in

the action. The bilinear action has been computed by considering the variation of SB +Sb

under (3.1) and by keeping only terms up to the quadratic order.9 We split it into different

contributions as follows:

S(h, h) + S(V, V ) + S(h, V ) + S(τ, τ) + S(h, τ) + S(V, τ)

+S(V2, V2) + S(V, V2) + S(ξ, ξ) + S(h, ξ) , (3.5)

where S(h, h) is the bilinear action that depends only on the fluctuations hMN , S(h, V )

represents the mixing term between hMN and VM and so on. We have S(h, V2) = S(τ, V2) =

0 as a consequence of our background ansatz, for which HMNP = 0. We give here the

explicit expressions for the bilinear action that depend only on the bulk fields; the dynamics

of the ξM fields, are explicitly given in appendix A. We find:

S(h, h) =

∫

dDX
√
−G

{

1

2κ2

[

(

hMN
;M − 1

2
h;N

)2

− 1

2
hNP

;Mh
;M

NP +
1

4
h;Mh;M − 1

2
R1h

2

]

−1

2
hPMh

P
N

(

1

2
eφ/2FMRFN

R +
1

4κ2
∂Mφ∂Nφ

)

−1

2
hMNhPR

(

1

κ2
RPMNR − 1

2
eφ/2FPMFNR

)

−T
2

[

BMN
(

hPMh
P
N − hhMN

)

+
1

2
BMNPRhMNhPR

]}

, (3.6)

where the semicolon denotes the (background) gravitational covariant derivative, h ≡
GMNhMN , R P

MN R is the Riemann tensor for the background metric and we have defined

2

κ2
R1 ≡ 1

κ2
R− 1

4
eφ/2F 2 − 1

4κ2
(∂φ)2 − V(φ) (3.7)

and

BMNPR ≡
∫

d4x
√

g/G δ(X − Y (x))

[

1

2

(

∂YM · ∂Y N
)

∂Y P · ∂Y R

−
(

∂YM · ∂Y P
)

∂Y N · ∂Y R

]

. (3.8)

The term proportional to BMNPR in the last line of (3.6) is the contribution to S(h, h)

coming from the brane action Sb, whereas the term proportional to BMN comes from the

9The EOMs (2.7)–(2.10) guarantee that the linear terms vanish.
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EOMs (2.7), which we have used to write S(h, h) in the form (3.6). Moreover,

S(V, V ) =

∫

dDX
√
−G

[

−1

2
eφ/2

(

DMVND
MV N −DMVND

NVM
)

(3.9)

−κ
2

12
γ2eφ

(

F[MNVP ]

)

(

F [MNV P ]
)

− 1

2
geφ/2FMNVM × VN

]

,

S(h, V ) = −
∫

dDX
√
−Geφ/2

(

DMV N −DNVM
)

(

1

4
hFMN + hPNF

P
M

)

, (3.10)

S(τ, τ) = −
∫

dDX
√
−G

[

1

4κ2
(∂τ)2 +

1

2

∂2V
∂φ2

τ2 +
1

32
eφ/2F 2 τ2

]

, (3.11)

S(h, τ) =

∫

dDX
√
−G

[

1

2κ2
∂Mτ ∂Nφ

(

hMN − 1

2
GMN h

)

− 1

2

∂V
∂φ

h τ

+
1

4
eφ/2

(

FMPFN
P − 1

4
F 2GMN

)

τ hMN

]

, (3.12)

S(V, τ) =

∫

dDX
√
−G

[

−1

4
eφ/2FMN

(

DMV N −DNVM
)

τ

]

, (3.13)

S(V2, V2) = − 1

48

∫

dDX
√
−Geφ V[NP ;M ]V

[NP ;M ], (3.14)

S(V, V2) = − κ

12
γ

∫

dDX
√
−Geφ V[NP ;M ]F

[MNV P ], (3.15)

where

F[MNVP ] ≡ FMNVP + 2 cyclic perms, V[NP ;M ] ≡ VNP ;M + 2 cyclic perms.

We would like to remind the reader of the assumptions we have made to derive (3.6)

and (3.9)–(3.15) (and (A.1)–(A.2) given in appendix A):

• If the Kalb-Ramond field and the term HMNPH
MNP in (2.3) is not included, then

the only assumption we made is that the background satisfies the EOMs (2.7)–(2.10).

• If the Kalb-Ramond field and the term HMNPH
MNP in (2.3) is instead included, we

also assumed D = 6 and the background gauge field A to lie in the Cartan subalgebra.

We observe that if we want to focus on theD-dimensional EYMΛ system we can restrict

ourselves to the terms S(h, h), S(V, V ) (for γ = 0), S(h, V ) and the ξ-dependent terms

given in appendix A. Instead, if we want to consider the 6D supergravity, we should put

γ = 1, V(φ) = 8 g2
1 e

−φ/2/κ4 and also take into account the terms (3.11)–(3.15). Finally, we

note that our results reduce to those of ref. [12] which studies a general non-supersymmetric

class of thick brane models, once we take T = 0, γ = 0 and we neglect the fluctuations VMN .
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3.2 Local symmetries

As a consequence of the local symmetries of the complete model, the linearized theory also

possesses a number of local symmetries:

δhMN = −ηN ;M − ηM ;N , (3.16)

δVM = −ηLFLM −DMχ, (3.17)

δτ = −ηM∂Mφ, (3.18)

δVMN = 2γκχFMN + λN ;M − λM ;N , (3.19)

δξM = ηM (Y ) − ζα∂αY
M . (3.20)

Eqs. (3.16), (3.17) and (3.18) represent the effect of the local symmetries (descending

from the D-dimensional coordinate transformation invariance and gauge symmetry) on the

metric, the gauge field and the dilaton fluctuations (see e.g. ref. [12]). The bulk functions

η and χ are the gauge functions associated with the D-dimensional coordinate invariance

and gauge symmetry.

Eq. (3.19) represents instead a local symmetry acting on VMN , which descends from

both the gauge symmetry and the Kalb-Ramond symmetry.10 For this reason χ and λM

are independent (bulk) gauge functions. Let us explicitly check (3.19). To do so, it is

enough to verify the invariance of the 3-form (3.4) under (3.17) and (3.19). We have

δH(1) =
1

κ
d (δV2) + 2γF ∧ δV = 2γd (χF ) + 2γF ∧ (−η · F −Dχ) , (3.21)

where we have used d2λ = 0 and η · F represents the 1-form with components ηMFMN .

Now, by using the 4D Poincaré invariance of the background and D = 6, which we always

assume in the presence of the Kalb-Ramond field, we have F ∧ (η · F ) = 0 and F ∧A = 0;

also, by remembering that A is assumed to lie in the Cartan subalgebra, we have dF = 0.

These equations are sufficient to conclude δH(1) = 0.

Finally, eq. (3.20) represents the local transformation of the perturbation of the brane

position, descending from the D-dimensional coordinate invariance and the 4D brane co-

ordinate transformation invariance (respectively the first and the second term on the right

hand side of (3.20)); the latter invariance is associated to ζα (a function of xα), which

represents another independent gauge function.

4 Perturbations in the light cone static gauge

Having derived the general bilinear action, we now have to choose a gauge in order to

study the physical spectrum. In this section we will discuss our gauge choice and give the

corresponding bilinear action.

10By Kalb-Ramond symmetry we mean the local invariance under B2 → B2 + dΛ of the action, where Λ

is a general 1-form.
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4.1 Gauge fixing

We have two types of local symmetries: the bulk local symmetries (which include the

D-dimensional coordinate transformation invariance, the gauge symmetry and the Kalb-

Ramond symmetry) and the 4D coordinate transformation invariance on the brane. Let

us start with the first group.

A very convenient gauge choice for the bulk local symmetry is the light cone gauge, as

it ensures that the dynamics of sectors with different spin decouple at the bilinear level.11

Another advantage of the light cone gauge is that it does not involve gauge artifacts such

as Faddeev-Popov ghosts, but contains only the physical spectrum [23–25]. To define this

gauge, let us introduce x(±) ≡
(

x3 ± x0
)

/
√

2 and A(±) ≡
(

A3 ±A0
)

/
√

2, for a general

vector AM . Then the light cone gauge is defined by

V(−) = 0 , h(−)M = 0 , V(−)M = 0 , ∀M . (4.1)

It can be proved that, after imposing (4.1), the (+) components of the different fields

(i.e. V(+), h(+)M and V(+)M ) are not independent, but can be expressed in terms of the

other components by means of constraint equations [12, 24, 25]. We therefore end up with

the following independent bulk fields: hij , him, Vi, Vim, hmn, Vm, Vij, Vmn and τ , where

i, j, . . . = 1, 2. In particular the h(++) field equation simply leads to the constraint

h = 0, (4.2)

which brings a considerable amount of simplification.

Concerning the 4D coordinate transformation invariance, we instead impose the con-

dition [15]

ξµ = 0. (4.3)

We will refer to (4.3) as to the static gauge. We observe that the light cone gauge and the

static gauge are compatible because, once we fix the light cone gauge by choosing ηM , χ

and λM in a suitable way, we still have the freedom to perform the local transformations

generated by ζα. The static gauge is also free from Faddeev-Popov unphysical ghosts [15].

We observe that (4.3) does not remove completely the brane position fields ξM , but we

are left with their components along the extra dimensions ξm . We will refer to them as

branons. Even if the branons represent physical degrees of freedom, it can happen that

they can be consistently truncated e.g. by imposing an orbifold symmetry, as in the RS

models or in the conical-GGP compactification [9]. In the following we will confirm that

the spin-0 fields ξm do not have any mixing with the spin-2 and spin-1 sectors in the light

cone gauge.

4.2 Bilinear action in the light cone static gauge

Here we provide the bilinear action in the light cone static gauge, that we have computed

by imposing the gauge conditions (4.1) and (4.3) on the general bilinear action and by

using the constraint equations for the (+) components. In this section we assume the form

11This has been observed in other studies, for example [12, 24–26].
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given in (2.12)–(2.17) for the background solution, and give the part of the action that is

independent of the branons. Those involving the branons are given in appendix B.

The results that are presented here reduce to those for the non-supersymmetric model

present in12 [12] once we take T = 0, γ = 0 and we neglect the fluctuations VMN ; they also

correctly reduce (for T = 0 and γ = 1) to the results of [27], where the linear perturbations

of the sphere-monopole solution to the 6D supersymmetric model are analyzed.

4.2.1 Spin-2 action

The spin-2 action S(2) only contains the field h̃ij ≡ hij − 1
2Gijh

k
k and has the following

simple expression in terms of h̃ j
i = Gjkh̃ik:

S(2)(h, h) = − 1

4κ2

∫

dDX
√
−G∂M h̃

j
i ∂

M h̃ i
j . (4.4)

We observe that (4.4) has exactly the same form as in [12] even if we have included the brane

terms. Therefore, the brane sources do not explicitly contribute to the spin-2 dynamics.

We shall use (4.4) to derive the 4D gravitational spectrum for the solutions described in

Subsection 2.3.

4.2.2 Spin-1 action

The spin-1 action S(1) involves him, Vi and Vim. We have the following explicit expressions.

S(1)(h, h) =

∫

dDX
√
−G

[

− 1

2κ2

(

∂µhim∂
µhim + ∂ρhim∂ρh

im + him;nh
im;n

)

− 1

4κ2
himh

im

(

A′2 +
B′2

2

)

− 1

4κ2
hρih

i
ρ

(

D2A
′B′ −A′2)

−1

2
himh

i
n

(

1

2
eφ/2F

m
lF

nl +
1

4κ2
∂m φ∂n φ

)

+
1

κ2
A′h i

ρ h
;m

mi − T

4

√

g/G δ(Xc − Yc)hm i h
m i

]

, (4.5)

where ′ ≡ ∂ρ. The last term in (4.5) is the brane contribution. We have introduced the

notation Xc and Yc for the internal components of the coordinate and the brane position

respectively, where the label c stands for the codimension of the brane. The other non

12We do, however, correct some typos in that reference.
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vanishing terms are the following.

S(1)(V, V ) =

∫

dDX
√
−G eφ/2

[

−1

2

(

∂µVi∂
µV i + e−A∂ρVi∂ρVi +DmViD

mV i
)

−κ
2

4
γ2eφ/2

(

FmnVi

)

FmnV i

]

, (4.6)

S(1)(h, V ) =

∫

dDX
√
−G eφ/2

(

−DmVih
i

l F
lm − 1

2
A′Vih

liFl ρ

)

, (4.7)

S(1)(V2, V2) = −1

8

∫

dDX
√
−Geφ

{

e−A

[

∂µVim∂
µV

m
i (4.8)

+GmlGnh
(

∂mVni∂lVhi − ∂mVni∂hVli

)

]

−e−4A−2φ
(

eφ+3A/2 V
m

i

)

;m

(

eφ+3A/2 V
n

i

)

;n

−2e−2AVmi∂
m

[

e−φ−A/2
(

eφ+3A/2V
n

i

)

;n

]}

,

S(1)(V, V2) = −κ
2
γ

∫

dDX
√
−Geφ

(

−1

2
A′VimV

iF m
ρ + Vni;mF

mnV i

)

. (4.9)

The term S(1)(h, V2) vanishes as a consequence of HMNP = 0 (at the background level).

We observe that the term S(1)(V, V ) reduces, as it should, to the corresponding action in

ref. [6] in the case in which Vi is orthogonal to the background gauge field. Finally, we note

that the brane tension enters explicitly only in the term S(1)(h, h).

4.2.3 Spin-0 action and singularities due to backreacting, fluctuating branes

The last and most complicated part is the spin-0 action, which involves13 hmn, h i
i , Vm,

τ , Vij , Vmn and ξm. We observe that, in the light cone static gauge, the fields ξm indeed

only appear here. In other words they are in general completely decoupled from the spin-2

and spin-1 fields. Since it is quite complicated, we give the explicit expression of the spin-0

action in appendix B.

Having completed the bilinear action, we should make some observations regarding

its consistency, in particular given the presence of infinitesimally thin dynamical sources.

Indeed, as to be expected, if we include the gravitational backreaction of the branes (T 9

0) then there are singular contributions to the dynamics of both the bulk gravitational

fluctuations and the branons.

First, concerning the bulk gravitational fluctuations, we encounter localized contribu-

tions to the mass terms in both the spin-1 (see eq. (4.5)) and spin-0 (see eq. (B.1)) sectors.

These contributions involve the behaviour of background and perturbed fields at the back-

ground positions of the branes. They are well-defined in the codimension one RS scenario,

where the metric is well-defined everywhere including at the brane positions (although its

derivatives are not). They do not appear to be well-defined in the codimension two (or

higher) case, where the internal metric is actually singular at the brane positions due to the

13Note that hmn and h i
i are not independent as eq. (4.2) implies h i

i + h m

m = 0.
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backreaction of the branes. However, as we shall see in subsequent sections, these terms

do not obstruct our derivation of the 4D particle spectra arising from bulk modes in 6D.

Meanwhile, the linearized dynamics for the branons of a backreacting brane would be

more problematic. For example, in (B.13), since the action is evaluated at the background

position of the branes, the kinetic term for the branons is not well-defined in the codimen-

sion two case, because of the conical defect in Gmn. Such a singularity was discussed in [13],

where it was argued that within the domain of validity of the effective field theory, the cur-

vature singularity could be discarded. Moreover, the mass term for the branons takes the

form14 of a δ(0). These singularities are not present in the RS model, as there the branons

are projected out with an orbifolding.15 Indeed we should reiterate here that we apply our

analysis to codimension one branes only on orbifold fixed points (to avoid the appearance

of Gibbons-Hawking boundary terms), and so without branon degrees of freedom.

In order to perform a complete analysis of the spin-0 action in codimension two (or

higher) models, taking into account both the backreaction of the brane and its dynamical

fluctuations, it seems necessary to resolve the thin structure of the brane. Otherwise

we can assume a brane tension much smaller than the 6D fundamental scale, so that its

backreaction is negligible. Or we can assume a high brane tension so that the brane is

very heavy and rigid and does not oscillate. Or else we can assume an additional orbifold

symmetry under which the branons are projected out — an example of such a symmetry

has been provided in ref. [9] and is discussed in16 appendix C. In these cases, we can avoid

the singular branon action.

5 6D (and 5D) braneworlds

In the second part of this paper, we apply the results of the previous sections to derive the

4D particle spectra in specific setups. Our main interest is in the warped (and unwarped)

axi-symmetric braneworld compactifications of 6D supergravity, but along the way we shall

also discuss the rugbyball compactifications in the non-supersymmetric 6D EYMΛ theory,

as well as the 5D Randall-Sundrum models. We discuss in order the spin-2, spin-1 and

spin-0 fluctuations.

5.1 Gravitational fluctuations

The simplest application of our results is the analysis of the spin-2 sector. As we have

discussed, this sector completely decouples from the rest. The h̃ j
i fields contain only

the maximal helicity components of a spin-2 multipet; one should look for the remaining

14δ(0) singularities due to the localization of fields on a boundary have been discussed in a different

context (5D SYM theory on S1/Z2) in [28].
15Indeed, in the RS literature, the radion has been studied in depth [29], but the branons are absent.

Although the radion can also be seen as a brane bending in the case of RS, since the branes are at the

boundaries of the internal space, one should not confuse the radion with the branon. The radion is a

deformation of the bulk metric, whereas the branon is a deformation of the brane itself within the bulk

manifold. As a check of our formalism, we will find the radion mode in Subsection 5.4.
16By using the explicit expression for the mixing terms between branons and bulk fields given in ap-

pendix B, it is easy to confirm that symmetry consistently truncates the branons.
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components in the spin-1 and spin-0 actions. However, by virtue of 4D Poincaré invariance,

the lower helicity components must have the same spectrum [12]. We can therefore focus

on eq. (4.4) to study the spin-2 fluctuations.

In order to analyze this sector we deduce the EOMs from eq. (4.4):

∂M

(√
−G∂M h̃ j

i

)

= 0 ∀ i, j . (5.1)

In deriving this equation we have required as usual that the boundary terms which emerge

in the integration by parts vanish, that is

∫

dDX∂M

(√
−Gδh̃ j

i ∂
M h̃ j

i

)

= 0, (5.2)

where δh̃ j
i is the variation of the field h̃ j

i , which is performed to apply the minimal action

principle. Since we assume standard boundary conditions on the 4D boundary, (5.2) reduces

to [6, 30]
∫

dD2+1X∂m

(√
−Gδh̃ j

i ∂
mh̃ j

i

)

= 0. (5.3)

We now perform a KK decomposition of the fields as follows:

h̃ j
i (X) =

∑

k

h̃
(k)j
i (x)fk(ρ, y), (5.4)

where k represents a collective KK number. By taking h̃
(k)j
i (x) to be an eigenfunction of

ηµν∂µ∂ν , that is ηµν∂µ∂ν h̃
(k)j
i (x) = M2

k
h̃

(k)j
i (x), the EOMs (5.1) become

− 1√
−Ge

A∂m

(√
−G∂mfk

)

= M2
kfk (5.5)

and the corresponding boundary conditions (5.3) read (we recall that δh̃ j
i and h̃ j

i are

independent fields)

∫

dD2+1X∂m

(√
−Gfk′∂mfk

)

= 0. ∀k,k′ . (5.6)

Condition (5.6) ensures that the operator acting on fk in the left hand side of (5.5) is

a Hermitian operator [6, 30]; we will therefore refer to (5.6) as the hermiticity condition

(HC). In addition to the HC we will also require the wave functions fk to be normalizable,

that is
∫

dD2+1X
√
−Ge−Af2

k <∞.

This normalizability condition (NC) is equivalent to the finiteness of the kinetic energy of

the modes h̃
(k)j
i (x). We observe that there is always a constant massless (M2

k
= 0) solution

to (5.5), satisfying the HC (5.6). This solution corresponds to a 4D graviton provided that

the NC is satisfied, that is
∫

dD2+1X
√
−Ge−A <∞.
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5.1.1 Randall-Sundrum

In the special case D = 5, and therefore in particular for the RS background (2.18), the

EOM (5.5) has the form

− e−A∂ρ

(

e2A∂ρfk
)

= M2
k
fk . (5.7)

Here we do not want to analyze the latter equation as this has been done in the original

RS works, but we observe, as a check of our spin-2 action, that (5.7) has exactly the same

form as in [2].

5.1.2 6D brane worlds

We now move to the conical-GGP solutions to 6D supergravity given in eqs. (2.21)–(2.22).

Since our internal space is topologically S2, we require h̃ j
i to be periodic functions of ϕ:

h̃ j
i (X) =

∑

n,m

h̃ j
inm

(x)fnm(ρ)eimϕ, (5.8)

where m is a generic integer and n is an extra KK number that emerges as we have a

number of compact dimensions greater than one. Also we observe that eq. (5.5) with

the HC and NC is formally identical17 to the corresponding problem for 4D gauge fields

addressed in ref. [6]. Therefore, here we only give the result. The wave functions can be

expressed in a more compact way by introducing

ψ ≡ e(3A+B)/4f, (5.9)

where we have suppressed n and m. The explicit expression for ψ is

ψ ∝ zǫ(1 − z)βF (a, b, c, z), (5.10)

where z ≡ cos2 (u/r0), F is Gauss’s hypergeometric function and

ǫ ≡ 1

4
(1 + 2|m|ω) , β ≡ 1

4
(1 + 2mω) , c ≡ 1 + |m|ω,

a ≡ 1

2
+

m

2
ω +

|m|
2
ω +

1

2

√

r20M
2 + 1 + m2 (ω − ω)2,

b ≡ 1

2
+

m

2
ω +

|m|
2
ω − 1

2

√

r20M
2 + 1 + m2 (ω − ω)2, (5.11)

with

ω ≡ (1 − δ/2π)−1, ω ≡ (1 − δ/2π)−1. (5.12)

Moreover the explicit form of the mass spectrum is given by

M2 =
4

r20

[

n(n + 1) +

(

1

2
+ n

)

|m| (ω + ω) + m2ωω

]

≥ 0, (5.13)

17In [6] there is the extra parameter NV , which is equal to zero here. To check that the two problems

are identical it is useful to remember A = φ/2, which is true for the conical-GGP solutions. Also, take care

that φ in reference [6] is half φ here.
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Figure 1. Graviton Wave Function Profiles: n = 0, 1, 20 modes plotted for angular momentum

numbers m = −1, 0. The parameters are chosen to be (r0, ω, ω) = (1, 1/4, 1), corresponding to a

single negative tension brane at u = 0. Also the normalization constant is set such that
∫

du|ψ|2 = 1.

The number of intersections with the u-axis equals n, according to quantum mechanics. Notice that

the (m,n) = (0, 0) mode is massless.

where n = 0, 1, 2, 3, . . . [6]. So we have obtained the exact and complete spectrum (wave

functions and masses) for the spin-2 fluctuations of the conical-GGP solutions. We observe

that eq. (5.13) tells us there is a massless normalizable solution (for n = m = 0), which

corresponds to the 4D graviton. This solution is separated from the first KK excitation

by a finite mass gap, which is of order 1/r0 (if ω ∼ ω ∼ 1). We plot some representative

wave function profiles in figure 1. As discussed in [6] the asymptotic behaviour close to

the branes is universal for each KK tower, and it does not appear possible to separate

the infinite number of heavy modes from the light ones by using their respective wave

function profiles.

Here we also observe that eq. (5.1) is independent of γ and the dilaton potential V.

This implies that the spin-2 spectrum of the non supersymmetric and supersymmetric

models are the same (provided the backgrounds are the same). Indeed, the rugbyball

configuration (that is ω = ω) leads to the same spin-2 spectrum in the EYMΛ model and

in the 6D supergravity.

Finally, as a check, we can consider the S2 limit (ω, ω → 1), whose mass spectrum is

well-known. Our spectrum (5.13) reduces to

r20
4
M2 = l(l + 1), multiplicity = 2l + 1 , (5.14)

where l = 0, 1, 2, 3, . . .. Since r0/2 represents the radius of S2 in the sphere limit, this is

exactly the result that one finds by using the spherical harmonic expansion [31, 32] from

the beginning.

5.2 Vector fluctuations

Here we analyze the vector fluctuations, in particular their wavefunction expansions and

mass spectra. In the following subsection we shall study the implications of these results

for the structure of the 4D gauge group in the 6D models of interest. The physical 4D

vector field spectrum can be extracted from the spin-1 action given in Subsection 4.2.2.
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However, some of the perturbations in that action are simply the helicity-(±1) components

of massive gravitons and therefore should not be interpreted as independent vector fields.

5.2.1 Randall-Sundrum

To illustrate the previous point we first notice that our spin-1 action leads to the well-known

result that there are no physical 4D vector fields in the RS model (unless one introduces

bulk gauge fields). Indeed, in that case the only field appearing in the spin-1 action is hiρ,

whose action is simply

S(1)(h, h) ∝
∫

d5X
√
−G

(

∂µhiρ∂
µhi

ρ + ∂ρhiρ∂ρh
i
ρ −

A′2

2
hiρh

i
ρ −

3

2
A′′hiρh

i
ρ

)

, (5.15)

where we used the property

A′′ + Tκ2δ(ρ − Y )/3 = 0 (5.16)

that follows from the form of the warp factor, eq. (2.18), in the RS model. Therefore,

once (5.16) is used the problem assumes the same form as in ref. [12], where it is shown that

the 4D spectrum from hiρ exactly reproduces the graviton one with the zero mode removed.

By counting the degrees of freedom, it follows that there are no physical vector fields.

5.2.2 6D brane worlds

Let us begin by considering what we might expect from the symmetries of the problem —

with some benefit of hindsight from the authors. In the limit where the brane tensions go

to zero, the smooth sphere-monopole compactification is recovered. In this case, standard

KK theory tells us that there are three massless KK gauge bosons,18 which manifest the

SU(2) isometries of the sphere in the 4D theory [31]. Clearly, any branes break the spherical

symmetry in the internal dimensions. For the solutions of present interest an axial isometry

survives, and therefore we can expect the 4D theory to enjoy a U(1) KK gauge symmetry.19

At the same time, for the case of an unwarped “saddle-sphere” with the special deficit

angles (for α = 1 we recover the sphere)

δ = −2π,−4π, . . . or α =
1

ω
= 2, 3, . . . (5.17)

the metric (2.27) — defined everywhere but at the branes — has three single-valued Killing

vectors, which obey the Lie algebra of SU(2):

K+ = eiαϕ

(

∂

∂θ
+ i cot θ

1

α

∂

∂ϕ

)

, K− = e−iαϕ

(

− ∂

∂θ
+ i cot θ

1

α

∂

∂ϕ

)

, K0 = − i

α

∂

∂ϕ
.

(5.18)

18There may be additional massless gauge fields descending from any unbroken higher dimensional gauge

symmetries.
19For the analysis of a very similar model, in which the SU(2) KK gauge symmetry of the sphere is broken

down to U(1) by smooth axisymmetric deformations, see ref. [33].
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Only one of these Killing vectors, K0, implies a genuine continuous isometry, since K±

cannot be globally integrated to an isometry.20 In other words, we have an infinitesimal

SU(2) isometry for the special saddle-spheres, compared to a genuine SU(2) isometry for

the sphere. As we will show, this turns out to be sufficient to ensure three massless 4D

vectors amongst the KK spectra. From the point of view of the full 4D theory, however,

we will argue that these massless fields arise accidentally and that their masslessness is not

protected by any symmetry.

Rugbyball harmonics Let us now see how the above story plays out in detail. Our

focus shall then be on the unwarped rugbyballs and saddle-spheres, eq. (2.27), and indeed

all previous results have indicated that warping does not lead to any qualitative changes in

the physics (see the spin-2 results in the present paper, as well as refs. [6]–[11]). We shall

thus proceed by finding a set of “rugbyball harmonics” and their mass spectra, in analogy

to the spherical harmonics (and, more generally, the so-called Wigner functions) used in

the smooth sphere compactification [31].

We first observe that the vector field fluctuations Vi, which are orthogonal to the

gauge field background (ViFmn = 0), do not mix with the other perturbations him and

Vim. These fluctuations have been already studied in ref. [6] where the complete KK

towers are provided and it is shown that there are as many 4D gauge fields as fluctuations

Vi with vanishing monopole charge (Vi × Fmn = 0), as expected from group theory. Here

we therefore consider only the case when Vi is parallel to the background monopole.

Now, from Subsection 4.2.2 it follows that the spin-1 action for unwarped solutions

has the following form.

S(1)(h, h) = − 1

2κ2

∫

d6X
√
−G

(

∂µhmi∂
µhmi + hmi;nh

mi;n +
R

2
hmih

mi

)

,

S(1)(V, V ) = −1

2

∫

d6X
√
−G

[

∂µVi∂
µV i + ∂mVi∂

mV i +
κ2

2
γ2F 2ViV

i

]

,

S(1)(V2, V2) = −1

8

∫

d6X
√
−G

(

∂µVmi∂
µV mi + Vmi;nV

mi;n +
R

2
VmiV

mi

)

,

S(1)(h, V ) + S(1)(V, V2) =

∫

d6X
√
−G

(

−∂mVihniF
nm − κ

2
γ∂mV

iVniF
nm
)

, (5.19)

where we have used Vi;m = ∂mVi because the background solution is unwarped and Vi is

uncharged under the background monopole. Also m,n, . . . here run over θ and ϕ. To derive

the last term in S(1)(h, h) we have used the Einstein equations:

2

κ2

√
−GRmn =

√
−GFmlF

l
n +GmnTδ(X2 − Y2), (5.20)

which allow us to rewrite the brane contribution in the last term of (4.5) as a combination

of the Ricci tensor and the field strength. Also we have used that in two dimensions

20To avoid the need of differential geometric results for singular spaces, we can consider removing the

brane singularities and taking instead a smooth non-compact manifold, for which 0 < θ < π. Killing vector

fields are the generators of the infinitesimal isometries of a manifold, whereas an isometry is a global aspect

of the geometry. Whilst for smooth compact manifolds the Killing vectors are always globally integrable to

an isometry, for non-compact manifolds this may not always be the case.
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Rmn = GmnR/2 and the Maxwell equations Fmn
;m = 0. The EOMs descending from (5.19)

are the following.
(

∂2 +D2 − R

2

)

hmi − κ2F l
m ∂lVi = 0, (5.21)

(

∂2 +D2 − R

2

)

Vmi − 2κγF l
m ∂lVi = 0, (5.22)

(

∂2 +D2 − κ2

2
γ2F 2

)

Vi + Fnmhni;m +
κ

2
γFnmVni;m = 0, (5.23)

where ∂2 ≡ ∂µ∂
µ and D2 ≡ DmD

m. As for the spin-2 case above, the EOMs come with a

set of boundary conditions, which we refer to as Hermiticity Conditions (HCs) [6, 30]:
∫

d6X
√
−G

(

δhmih
mi;n

)

;n
= 0,

∫

d6X
√
−G

(

δVmiV
mi;n

)

;n
= 0, (5.24)

∫

d6X
√
−G

(

δV ihliF
lm
)

;m
= 0,

∫

d6X
√
−G

(

δV iVliF
lm
)

;m
= 0, (5.25)

∫

d6X
√
−G

(

δVi∂
mV i

)

;m
= 0. (5.26)

We will additionally impose the usual Normalizability Conditions (NCs).

We can immediately observe that there is a simple solution to eqs. (5.21)–(5.23), with

hθi = hϕi = 0, Vθi = Vϕi = 0 and Vi independent of the extra dimensions. Its squared mass

is given by

M2 =
κ2

2
γ2F 2 =

8

r20
γ2, (5.27)

where we explicitly used the rugbyball solution. We see that the monopole U(1) is a gauge

symmetry in the EYMΛ model (γ = 0), whereas it is broken in 6D supergravity (γ = 1),

like for the smooth sphere-monopole solution [16].

We now want to find the general solution to eqs. (5.21)–(5.23) subject to the HCs and

NCs. System (5.21)–(5.23) is a rather complicated set of coupled differential equations,

but the case at hand can be elegantly solved by using the harmonic expansion of the scalar

Laplacian; let us now describe this technique. It is easy to solve the eigenvalue problem

for −D2 acting on the 2D scalars (in fact, for A = 0 and applying the diagonal HC and

the NC, the system is identical to that for the helicity-2 field above). The eigenfunctions

are then given by (5.8)–(5.11) with ω = ω, and the eigenvalues can be written as:

µ2
nm ≡ 4

r20
(n + |m|ω) (n + |m|ω + 1) ≥ 0, (5.28)

where n = 0, 1, 2, 3, . . . and m run over all the integers. This is the generalization to the

rugbyball of the scalar spherical harmonics. They form a complete basis for the 2D scalar

fields Vi.

We next proceed by determining a complete basis for the 2D vector fluctuations

{hθi, hϕi} and {Vθi, Vϕi}. We focus only on {hθi, hϕi} as the analysis for {Vθi, Vϕi} is

identical. A way to determine such a basis is to look at the eigenvalue problem for the op-

erator −D2 +R/2 appearing in eq. (5.21), because the diagonal HC (5.24) guarantees that
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this operator is Hermitian over the space of functions where {hθi, hϕi} lives, and therefore

has a complete basis of eigenfunctions. Again, this system is easy to solve, this time using

the results21 of ref. [9]. We therefore just summarise the results. The eigenvalue problem

for −D2 + R/2 on 2D vectors generically mixes the hθi and hϕi components, but reduces

to a diagonal form, at least in the rugbyball case, by introducing22

h±i ≡
1√
r0

(

eB/4hθi ± ie−B/4hϕi

)

. (5.29)

Eq. (5.29) defines a new basis for tensors on the 2D internal space, and we remind the

reader that for the rugbyball eB = α2 sin2 θ. The squared mass problem can then be

transformed into a pair of decoupled Schrödinger equations, which can be solved. Note that

the singularities of the spin-1 action discussed in Subsection 4.2.3 appear in the Schrödinger

problems as two singular points in the effective potentials (one for each brane), which do

not obstruct the determination of the spectrum [6, 9]. The h±i fields can be KK expanded

as follows

h±i(X) =
∑

n,m

h±i nm(x)f±nm(θ)eimϕ, (5.30)

and, in the case

m = 0 or |m| ≥ 1/ω, (5.31)

both the KK tower associated with f+ and f− turn out to be exactly that in (5.28), where

n = 0, 1, 2, 3, . . . and m run over all the integers, but with the constraint {n,m} 6= {0, 0}.
Condition (5.31) is satisfied by every |m| for non-negative tensions and it is satisfied by

some (but not all) |m| for negative tensions. This, however, will be enough to show that

when the tensions assume the values in (5.17), the KK spectra include extra massless spin-1

fields. In the following we denote (5.31) with 0 6< |m|ω 6< 1.

So we have found that, for modes satisfying (5.31), the spectrum of −D2 + R/2 on

2D vectors is made up of two identical copies of the spectrum of −D2 on 2D scalars but

with zero mode removed. This suggests that we may be able to express the eigenfunctions

of −D2 + R/2 on 2D vectors in terms of eigenfunctions of −D2 on 2D scalars. Indeed, if

we consider a solution V to the eigenvalue problem of −D2 with eigenvalue µ2, then it is

easy to show that ∂mV is an eigenfunction of −D2 +R/2 with the same eigenvalue. In the

case (5.31), this implies that we can write

∂±
(

fnm(θ)eimϕ
)

= cnmf
±
nm(θ)eimϕ, (5.32)

where we have used the basis defined in eq. (5.29) for ∂±, and moreover cnm are normal-

ization constants which, having chosen a convenient normalization for the wave functions,

can be fixed to be cnm = µnm/
√

2. This is the analogue of the derivative relation that

exists between Wigner functions for fields of different spin on the sphere (see eq. (3.17) of

21In ref. [9] a more general problem has been solved, which reduces to the present one in the unwarped

case A = 0.
22The ± appearing in (5.29) and throughout this section should not be confused with the (±) used to

defined the light-cone gauge in Subsection 4.1, for this reason the latter are written inside brackets.
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ref. [31]). So, remarkably, we can construct the complete harmonic expansion for23 Vi, h±i

and V±i by using the solution to the eigenvalue problem for the scalar Laplacian. Moreover,

it is easy to check that, having applied the diagonal HCs to derive the complete basis for

h±i and V±i, the mixed HCs (5.25) are automatically satisfied.

Having derived the harmonic expansions one more observation is necessary. It turns

out that the factor F +
+ which appears in the mixing terms S(1)(h, V ) and S(1)(V2, V ) is

constant for the rugbyball (F +
+ = 2

√
2i/(r0κ)). Putting everything together, we are then

able to transform the differential eigenvalue problem for the squared mass operator into

an algebraic problem that can be solved. In particular, after integrating out the extra

dimensions, Action (5.19) assumes the following form in terms of the KK modes.

S(1)(h, h) + S(1)(V2, V2) + S(1)(h, V ) + S(1)(V, V2) + S(1)(V, V )

=

∫

d4x
∑

n,m

{

1

2κ2
(h+i nm)∗

(

∂2 − µ2
nm

)

h+i nm +
1

2κ2
(h−i nm)∗

(

∂2 − µ2
nm

)

h−i nm

+
1

8
(V+i nm)∗

(

∂2 − µ2
nm

)

V+i nm +
1

8
(V−i nm)∗

(

∂2 − µ2
nm

)

V−i nm

−2µnmi

r0κ

[

(h+i nm)∗ Vi nm − (h−i nm)∗ Vi nm

+
κ

2
γ ((V+i nm)∗ Vi nm − (V−i nm)∗ Vi nm)

]

+
1

2
(Vi nm)∗

(

∂2 − µ2
nm − 8γ2

r20

)

Vi nm

}

, (5.33)

where the sum over n and m is performed over n = 0, 1, 2, 3, . . . and m = 0,±1,±2,±3, . . .,

but with the condition h±i 0,0 = 0 and V±i 0,0 = 0. Also, as a consequence of the reality

conditions h+i(X) = h∗−i(X), V+i(X) = V ∗
−i(X) and Vi(X) = V ∗

i (X), we have the relations

h+i nm(x) = h∗−i n−m
(x), V+i nm(x) = V ∗

−i n−m
(x) and Vi nm(x) = V ∗

i n−m
(x).

In this way, the squared mass operator has finally been transformed into an algebraic

matrix with constant entries and we can find its eigenvalues exactly.

6D EYMΛ model. To address the spin-1 fluctuations in the 6D EYMΛ model, we

set γ = 0 and remove the Kalb-Ramond perturbations (V±i = 0) in the above 4D bilinear

action, eq. (5.33). By diagonalizing the corresponding mass-matrix, we find that the explicit

helicity-(±1) towers are as follows

M2
nm = µ2

nm ≥ 0, (5.34)

with n = 0, 1, 2, 3, . . . and m = 0,±1,±2,±3, . . ., but 0 6< |m|ω 6< 1 and

M2
nm = µ2

nm ± 2
√

2

r0
µnm ≥ 0, (5.35)

with n = 0, 1, 2, 3, . . . and m = 0,±1,±2,±3, . . ., but 0 6< |m|ω 6< 1 and {n,m} 6= {0, 0}.
Neither tachyons nor ghosts are found. The {n,m} = {0, 0} mode in (5.34) is the massless

23It is easy to show that all we have stated about the harmonic expansion for hmi holds for Vmi as well.
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6D Einstein-Yang-Mills-Λ

Squared mass Multiplicity

0 1

µ2
nm + 2

√
2

r0
µnm 1

µ2
nm − 2

√
2

r0
µnm 1

6D Supergravity

Squared mass Multiplicity

8
r2
0

1

µ2
nm 2

4
r2
0

(

1 +
r2
0
4 µ

2
nm +

√

1 + r20µ
2
nm

)

1

4
r2
0

(

1 +
r2
0
4 µ

2
nm −

√

1 + r20µ
2
nm

)

1

Table 1. Squared mass KK towers of physical spin-1 perturbations around the rugbyball solution

to the 6D EYMΛ model and 6D supergravity, for modes satisfying (5.31). µ2

nm
is defined in (5.28),

but here the KK numbers n,m run over n = 0, 1, 2, 3, . . ., m = 0,±1,±2,±3, . . ., with the constraint

{n,m} 6= {0, 0}.

gauge field associated with the 6D monopole U(1), which we have previously discussed

in (5.27). The remaining modes in (5.34) are instead the helicity-(± 1) components of

massive gravitons; we observe that the massive part of the KK tower (5.13) is exactly

reproduced by (5.34), according to 4D Poincaré invariance. The KK towers in (5.35)

correspond instead to physical spin-1 fields. The complete set of masses for physical spin-1

fields is given in table 1.

By analyzing those towers, one easily finds that there are physical massless 4D spin-1

fields (in addition to (5.27)) if and only if µ2
nm = 8/r20 , which can be restated as

{n,mω} = {1, 0} or {n,mω} = {0,±1}. (5.36)

Therefore there is at least one massless spin-1 field for any value of the tension (this

corresponds to {n,m} = {1, 0}). In the sphere case (ω = 1) we have three ways to satisfy

this condition, that is

{n,m} = {1, 0}, {0,±1},

which correspond to the three gauge fields of SU(2)KK , whereas for positive tension rug-

byballs and generic saddle-spheres there is only one choice:

{n,m} = {1, 0},
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corresponding to the KK gauge group U(1)KK . However, for the special saddle-spheres

for which (5.17) holds, the number of massless vector fields is enhanced from one

plus one to one plus three!

We shall discuss in detail the physical significance of these modes in the following

subsection.

6D supergravity. We conclude this subsection by providing the helicity-(±1) masses

for the 6D supergravity (set γ = 1 and keep the Kalb-Ramond fluctuations in eq. (5.33)).

Diagonalizing the corresponding mass-matrix, we find:

M2 =
8

r20
> 0, (5.37)

which is the vector field associated with the monopole U(1),

M2
nm = µ2

nm ≥ 0, with multiplicity 3 (5.38)

and

M2
nm =

4

r20

(

1 +
r20
4
µ2

nm ±
√

1 + r20µ
2
nm

)

≥ 0 (5.39)

where n = 0, 1, 2, 3, . . ., m = 0,±1,±2,±3, . . ., {n,m} 6= {0, 0} and 0 6< |m|ω 6< 1. The

masses in (5.37), two towers out of three in (5.38) and the towers in (5.39) correspond to

physical spin-1 fields, whereas one of the towers in (5.38) are the helicity-(±1) components

of massive gravitons. The complete set of masses for the physical spin-1 fields is summarized

in table 1. We note that neither tachyons nor ghosts are found.

Regarding the massless vector fields the situation is similar to the 6D EYMΛ model.

It easy to see that the condition for masslessness is again (5.36) and, therefore, again we

have a single KK massless gauge boson for positive tensions and generic negative tensions;

instead, for negative tensions of the form (5.17), the number of massless vector fields is

enhanced from one to three!

As an effective check of the results presented in this subsection, we have also derived

the aforementioned spectrum in the sphere case (ω = 1) by expanding the bulk fields over

the Wigner functions as in [31] and obtained exactly the sphere limit of our towers.

5.3 Massless vectors and 4D gauge symmetries

In the previous subsection we observed three massless 4D vector fields amongst the KK

spectra for the 6D models24 on both the sphere and the special saddle-spheres (5.17). We

shall now address the physical significance of these modes. One of them, the one with axial

quantum number m = 0, should provide the gauge boson for the U(1)KK gauge symmetry,

descending from the axial isometry of the internal space. The other two massless vectors,

having m 6= 0, are charged under this axial symmetry and so we may expect the three

vectors to fit into a non-Abelian structure, like SU(2). For the sphere, this is indeed the

case, and the three massless vectors compose the gauge fields of an SU(2) gauge symmetry

24In the EYMΛ model there is also a massless vector field descending from the higher dimensional U(1)

gauge field, which forms a 4D U(1) gauge field.
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in the 4D theory. What happens for the special saddle-spheres, where there is no SU(2)

isometry in the background? Let’s take α = 2, 3, . . . , so we consider the special saddle-

spheres (we also allow for the smooth sphere with α = 1).

5.3.1 Why there are three massless vector modes

Let us begin by understanding why three massless vector modes appear in the spectrum,

despite the fact that any branes clearly break the SU(2) isometries of the sphere.

Above, we found that the massless vector fields arise as a linear combination of

h m
µ mn(x) and Vµmn(x) (and V m

µ mn(x) for 6D supergravity), once we have integrated out

the extra dimensions. In detail, if one takes the squared mass matrix defined implicitly by

the 4D bilinear action in (5.33) in e.g. the EYMΛ case, one finds that the mass eigenstates

are ({n,m} 6= (0, 0)):

Ai nm =
i

2
h+i nm − i

2
h−i nm +

1√
2
Vi nm,

Ui nm = − i

2
h+i nm +

i

2
h−i nm +

1√
2
Vi nm,

Wi nm =
1√
2
h+i nm +

1√
2
h−i nm, (5.40)

corresponding respectively to M2
nm = µ2

nm − (2
√

2/r0)µnm, M2
nm = µ2

nm +(2
√

2/r0)µnm

and M2
nm = µ2

nm in (5.35) and (5.34). Recall that the massless modes emerge from the

Ai nm tower, when {n,mω} = {1, 0}, {0,±1}.
We can write, then, the harmonic expansion of h m

µ (X) as:

h m
µ (X) =

∑

I=−,0,+

AI
µ(x)KI m(θ, ϕ) + massive modes . (5.41)

Using the expansion (5.29), (5.30), the explicit form for the wave functions (5.32) and the

rearrangement in terms of the mass eigenstates (5.40), it is straightforward to show that

KI m(θ, ϕ) indeed correspond to the Killing vectors (5.18) on the special saddle-sphere,

where I = 0 corresponds to {n,mω} = {1, 0} and I = ± to {n,mω} = {0,±1}. This is

just as in the traditional KK reduction scheme.

In this way, we confirm that the presence of infinitesimal isometries on the internal

space, which are generated by Killing vector fields, is sufficient for the appearance of

massless vector modes — even if they cannot be integrated to genuine isometries.

5.3.2 The absence of enhanced gauge symmetries in the full 4D theory

We now ask whether or not these massless vector modes behave as gauge fields of an SU(2)

gauge symmetry. The linearized 4D theory cannot probe any non-Abelian structure, and

so to understand the gauge invariance of the full 4D theory, we must go beyond linear

order. To this end, we consider a simple extension of the EYMΛ model, where we add a

single complex, massless, neutral scalar field which has an action:

SΦ = −
∫

d6X
√
−G∂MΦ∗ ∂MΦ (5.42)
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and which assumes a trivial VEV in the saddle-sphere background. It is easy to see that

the linearized equation of motion for Z := δΦ gives rise to the rugbyball scalar harmonics

(see above eq. (5.28)):

Z(X) =
∑

m,n

zmn(x)fmn(θ)eimϕ (5.43)

with the corresponding masses (5.28):

M2 =
4

r20
l (l + 1) where l = n + |m|ω . (5.44)

The multiplicity of a given mass is given by 2l + 1 when l is integer or half-odd integer;

otherwise it is given by 2([l] + 1
2) + 1, where [l] denotes the integer part of l. We also

note that for l integer (which corresponds also to mω integer), the wavefunction fmn(θ)

is an Associated Legendre function, just as for the spherical harmonics. The modes with

l non-integer are instead additional harmonics, which generically have no corresponding

states amongst the spherical harmonics nor indeed any of the Wigner functions.

Now let us ask how the 4D fields zmn(x) couple to the massless vector fields, and in

particular if they do in a gauge-invariant way. At trilinear level, this coupling descends

only from the term:

S(Z∗, hµm, Z) = −
∫

d6X
√
−G∂µZ∗ h m

µ ∂mZ (5.45)

and its complex conjugate. The above trilinear coupling can now be reexpressed in terms

of the 4D fields, and isolating the contributions involving the massless vectors, eq. (5.41),

we find:

S(z∗, AI
µ, z) = −

∫

d4x
√−g4 ∂µz∗AI

µ z
′
∫

dθ dϕ
r20
4
α sin θ f e−imϕKI m ∂m

(

f ′ eim
′ϕ
)

,

(5.46)

where we have suppressed the KK indices {n,m} and {n′,m′} on z, f and z′, f ′ respectively.

Performing the integral over the internal dimensions:

gI =

∫

dθ dϕ
r20
4
α sin θ f e−imϕKI m ∂m

(

f ′ eim
′ϕ
)

, (5.47)

we see that the wavefunction overlap (5.47) gives the 4D coupling between z(x) and z′(x)

via a massless vector field, AI
µ(x):

− gI

∫

d4x
√−g4 ∂µz∗AI

µ z
′ . (5.48)

Observe that if the full 4D theory were to respect an SU(2) gauge symmetry whose

gauge fields are the three massless vector modes, then z and z′ would belong to SU(2)

multiplets of the same dimension and (5.48) would correspond to the trilinear terms in the

gauge invariant combination −Dµz
a∗Dµz′a, where Dµz

a = ∂µz
a + AI

µT
I a

b z
b, the indices

a, b run over a, b = 1, . . . , r and r is the size of the multiplet. For the classic sphere, α = 1,

this is of course the case, and the wave function overlaps in (5.47) are zero unless z and z′
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belong to the same SU(2) multiplet, thanks to the properties of the spherical harmonics.

We shall now see that such a structure does not hold for the special saddle-spheres.

To this purpose, let us consider the rugbyball harmonics with 0 < mω < 1. The

pattern that emerges for the overlaps (5.47) once both the integrals over dθ and dφ are

performed,25 is that a mode, f , with 0 < mω < 1 and n even (respectively odd) has a

non-zero overlap with the modes, f ′, for which m′ω = mω ∓ 1 and all n′ odd (respectively

even). It can then easily be seen that this prevents the realization of an SU(2) gauge

symmetry. Take for instance the set of modes {z} with some mass-squared l(l + 1) in

which 0 < |m|ω < 1 and n = 0. This mass comes only with degeneracy 2, corresponding to

KK numbers {0,±m}. Therefore, if there exists an SU(2) gauge symmetry, then the modes

in {z} fall either into an SU(2) doublet or two singlets. The overlap (5.47) between the

modes {0,m} and {0,−m} is zero, and the subsequent vanishing of the coupling in (5.48)

tells us that {z} cannot form a doublet. On the other hand, the modes {0,±m} do have a

non-zero overlap with {n odd,±m− 1/ω} and {n odd,±m + 1/ω}, and so the two modes

in {z} each have a trilinear coupling (5.48) with towers of z′ and the massless vectors fields.

Thus, they cannot be singlets. In this way we can conclude that there does not exist an

SU(2) gauge symmetry corresponding to the massless vector fields.

We would like to draw one more insight into the absence of SU(2) gauge symmetry

for the full 4D theory. The Killing vectors (5.18) can be considered as generators of an

SU(2) algebra, and the mass-squared operator for the saddle-sphere scalars, −D2, can be

understood as the Casimir Operator for the algebra: − r2
0
4 D

2 = 1
2 (K+K− +K−K+) +

(K0)2. The saddle-sphere scalar harmonics form a basis for the Hilbert space of functions

on which the Hermitian operator, −D2 (plus boundary conditions), acts. However, the

SU(2) ladder operators, K±, do not act within this Hilbert space: the action of K± on

the harmonics fmn(θ)eimϕ with 0 < |m|ω < 1 gives back functions which do not obey the

NC and HC boundary conditions. Again, we see that the saddle-sphere harmonics do not

furnish well-defined representations of the SU(2)KK generated by the Killing vectors, and

it is precisely the modes with 0 < |m|ω < 1 that are the problematics ones.26

As we have implied above, the absence of an SU(2) KK gauge symmetry in the 4D

theory can be understood in the 6D picture as being due to the absence of a genuine SU(2)

isometry in the internal dimensions.

5.3.3 The emergence of enhanced gauge symmetries at low energies

Finally, notice that although the modes with 0 < |m|ω < 1 do not belong to well-defined

SU(2) representations, the massless wave functions that we have found are equivalent to

those present in the sphere case (up to an integer constant multiplying ϕ) and do furnish

25Whilst we have not checked this result for all ω, m and n the pattern is quite convincing.
26Notice that this range of m is empty for the special saddle-sphere with ω = 1

2
if we impose the Z2 orbifold

projection discussed in appendix C. In this case, then, all the KK modes are in well-defined representations

of SU(2) (corresponding to the Wigner functions), and we can expect an SU(2) gauge invariance in the

full 4D theory, at least if we remove the branes and discuss a smooth non-compact manifold. This is not

surprising, since – outside the branes — the Z2 orbifolding effectively cancels out the δ = −2π deficit angle,

and we return to the standard sphere case.
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well-defined SU(2) representations.27 This holds also for the massless spin-2 and spin-1

fields above, as well as the massless spin-0 fields discussed below.28 Therefore, the classical

low energy 4D effective theory that results from truncating the massive modes does enjoy

an SU(2) KK gauge invariance to all orders in perturbation theory — despite the absence of

a genuine SU(2) isometry in the extra dimensions. Indeed, this low energy 4D theory does

not distinguish between a compactification on a smooth sphere or a special saddle-sphere!

Moreover, we can argue that the above truncation to the massless sector is a consistent

one,29 at least for the bosonic theory that we have studied whose field content is identical to

that of 6D supergravity. Then, if we remove the branes and replace the singular space with

a smooth non-compact manifold, the local geometry is the same for the sphere everywhere

and the KK ansatz for the special saddle-sphere is essentially identical to that of the smooth

sphere. Meanwhile, the sphere reduction of 6D supergravity was shown to be a consistent

one in ref. [35], thanks to a remarkable conspiracy between properties of the 2-sphere and

the structure of supergravity.

5.4 Massless scalars

Finally, we turn to the spectra of 4D spin-0 fields, which are governed by the action given

in appendix B. In appendix C we give the complete spectra for unwarped braneworld

compactifications in 6D supergravity. Here, our focus shall be on the massless scalars

featured in the low energy 4D effective theory. Again we shall first review the RS model

and then examine the 6D braneworld models.

5.4.1 Randall-Sundrum

In the RS model of ref. [1], the massless scalar sector involves one normalizable mode (the

radion), which becomes non normalizable in the decompactification limit rc → ∞ [29].

Let us find this mode in our formalism. We can of course restrict our attention to the

spin-0 action S(0)(h, h) as in [1] only gravity is introduced and the branons are consistently

projected out by the S1/Z2 orbifold conditions. Therefore, we only have to deal with the

perturbation hρρ, because (4.2) implies h i
i = −hρρ. It is easy to derive the EOM for hρρ:

− 1√
−G∂M

(√
−G∂Mhρρ

)

+

[

−A′2 +
1

3
Tκ2δ(ρ − Y )

]

hρρ = 0, (5.49)

where Tκ2δ(ρ − Y ) ≡ T1κ
2δ(ρ) + T2κ

2δ(ρ − πrc). We now perform a KK decomposition

hρρ(x, ρ) =
∑

n
hρρ(x)fn(ρ) and focus on the massless case (ηµν∂µ∂ν = 0); we obtain the

simple equation

ψ′′ = 0, (5.50)

27This is a consequence of the fact that in our mass-squared’s, M2, as well as in our fnm(θ) wavefunctions,

m and ω enter only through the combination mω. This is obvious for the masses, and for the wave functions

it can be seen from eq. (5.11), after setting ω̄ = ω to recover the spectra for the rugbyball. Furthermore,

the massless modes all have integer mω.
28We should caution that, although there are no symmetries that suggest them to be massless, our

harmonic analysis has not included the modes with 0 < |m|ω < 1 in the spin-1 sector, nor the modes with

0 < |m|ω < 1 and 1 < |m|ω < 2 in the spin-0 sector.
29Mathematical consistency may of course not be necessary, if the truncation is consistent up to some

energy scale.
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where we have defined ψ ≡ eAf and used property (5.16). The only solution to (5.50)

satisfying the S1/Z2 orbifold conditions is ψ constant, which corresponds to

f ∝ e−A. (5.51)

Mode (5.51) is the wave function of the radion. By inserting this mode in the kinetic term

of hρρ in (B.1) one easily finds that it is normalizable for any finite rc, but becomes non

normalizable in the limit rc → ∞.

5.4.2 6D brane worlds

After this non-trivial check of our formalism we now turn to the conical-GGP solutions of

6D supergravity. The stability of the GGP solutions has been investigated in [7] and [9],

where no tachyons emerged unless non-Abelian gauge groups are considered. Indeed, in the

presence of non-Abelian gauge groups, an instability may arise in the sector described by

the action S(0)(V, V ), with Vm orthogonal to the background monopole30 [9]. We observe

that, even in the absence of non-Abelian gauge groups, the stability of the GGP solutions

is marginal, in the sense that there are necessarily massless scalars in the physical spec-

trum. These massless particles are manifestations of two symmetries in the model. One

is the following invariance of the EOMs: GMN → wGMN and eφ/2 → w eφ/2, where w

is a real number. Note that this is only a classical symmetry because the action rescales

as SB → w2 SB, so we do not expect the corresponding scalar to remain massless once

quantum corrections are included. The other is the Kalb-Ramond symmetry, which acts

as B2 → B2 + dΛ, where Λ is a general 1-form field. The actual presence of the zero mode

corresponding to the former symmetry has been shown in refs. [7, 11].

Here, by using our bilinear action, we can easily figure out where the other massless

scalar is. This emerges as the lightest 4D mode of the field Vij, whose bilinear action is

simply (see eq. (B.7))

− 1

16

∫

d6X
√
−Geφ−2A∂MVij∂

MVij . (5.52)

This action is equivalent to the spin-2 action (4.4) in the case of the conical-GGP solutions,

which satisfy A = φ/2. The wave functions and mass spectrum coming from Vij are

therefore identical to the one presented in Subsection 5.1. For n = m = 0 we obtain the

massless scalar field associated to the Kalb-Ramond symmetry. In the spherical limit this

corresponds to the l = 0 mode in (5.14) [27].

6 Summary of results

Before concluding, let us provide an overview of our results.

• We have derived the linearized dynamics, eqs. (4.4)–(4.9) and appendix B, for the

physical perturbations about general backgrounds in a general class of field theories.

In particular, we take Einstein-Yang Mills (EYM) theory in D spacetime dimensions,

30This instability is also present in the sphere-monopole solution [34], which is a particular case of the

GGP solutions.
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spin-2 spin-1 spin-0

Rugby-ball δ ≥ 0 all modes all modes all modes

Saddle-sphere δ = −2π all modes all modes all modes

Generic Saddle-sphere all modes m = 0; |m| ≥ 1/ω |m| = 0, 1/ω; |m| ≥ 2/ω

Warped Models all modes — —

Table 2. The sectors covered in the present paper for Braneworld Compactifications in 6D Super-

gravity. In order to address the spin-0 sector, we projected out the branons with an orbifolding.

We also here impose the orbifolding for all sectors in the presence of negative tension branes.

with a bulk dilaton or cosmological constant (Λ), and a number of dynamical 3-

branes. Moreover, for D = 6 we include a dilaton and 2-form potential. Therefore,

6D chiral supergravity, D-dimensional EYMΛ theory and the 5D Randall-Sundrum

models all fall within our analysis. The backgrounds considered respect 4D Poincaré

invariance, but may be warped in a radial transverse coordinate.

• Taking the Randall-Sundrum models as an illustrative example within our formalism,

we retrieve the well-known dynamics for spin-2 fluctuations and identify the massless

scalar (the radion), which is normalizable in the two brane model and becomes non-

normalizable in the one brane model.

• For the 6D EYMΛ model, we consider the unwarped “rugbyball-monopole” compact-

ifications, sourced by two 3-branes of equal tension. When the tensions are zero, we

recover the sphere-monopole compactification, and when the tensions are negative

we refer to the 2D geometry as a “saddle-sphere”. By deriving a set of “rugbyball

harmonics”, we are able to obtain analytic KK spectra; i.e. we discuss how to find

physical 4D spin-2, spin-1 and — consistently truncating branons — spin-0 fields and

their masses. We present the full spin-2 spectrum and the spin-1 spectra for axial

momentum number 0 6< |m|ω 6< 1.

• For the 6D supergravity, the backgrounds of interest are the warped, axially symmetry

braneworld (“conical-GGP”) solutions, which have unwarped limits to the rugyballs

and saddle-spheres, and to the sphere. Our focus is on the bosonic “Salam-Sezgin”

sector (from the gravity-tensor supermultiplet and the U(1) gauge multiplet in which

the background monopole lies), since the remaining bosonic sectors have been treated

elsewhere. We obtain the complete spin-2 spectrum. For the spin-1 and spin-0 sectors,

we restrict to the unwarped backgrounds, and employ the rugbyball harmonics to find

the spectra. The sectors covered by our analysis31 are summarized in detail in table 2.

Our main physical results for the 6D braneworlds are as follows.

• The spin-2 spectrum includes the massless 4D graviton separated from the rest of

the KK tower by a mass gap, and the mass gap is indeed observed in all sectors. For

31We also find the spectrum in the sphere case as a check.
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rugbyballs with positive deficit angles and for generic saddle-spheres, the spin-1 sector

contains a massless KK gauge boson due to the U(1) isometry in the background

(in addition to any massless 4D gauge bosons descending from unbroken 6D gauge

symmetries). For the special saddle-spheres with deficit angles δ = −2π,−4π, . . . ,

there is a qualitative difference. Here, there are three Killing vectors, which are well-

defined everywhere outside the branes and obey an SU(2) Lie algebra. Although only

one of them integrates to a genuine isometry, the number of massless KK vectors fields

is consequently enhanced to three. Meanwhile, in the spin-0 sector for supergravity,

we identify the two massless scalar fields expected in all cases from the classical

scaling symmetry and the Kalb-Ramond symmetry.

• The spin-2 and spin-1 spectra are all well-behaved despite the presence of

codimension-two dynamical brane sources, which induce singularities in the bulk ge-

ometry. To make progress in the spin-0 sector, we had to discard the branon modes

(e.g. by placing the branes at orbifold fixed points).

• The spectra analysed — which incorporates all modes for rugbyballs sourced by pos-

itive tension branes — do not harbour any instabilities; neither tachyons nor ghosts.

• To understand the significance of the three massless 4D vector fields that appear for

the special saddle-spheres, we go beyond bilinear order. We find that in the full 4D

theory, they do not represent gauge fields of an SU(2) gauge symmetry. This is due

to the presence of KK modes that are not in well-defined SU(2) representations. The

classical masslessness of the vector fields is thus not protected by any symmetry, which

is in accordance with the absence of a genuine SU(2) isometry in the background.

• In the massless sector, however, all modes fall into well-defined SU(2) representations.

Therefore, the low energy 4D effective theory obtained by truncating to the massless

sector does seem to enjoy a classical SU(2) KK gauge symmetry, despite the absence

of a background SU(2) isometry! Indeed, this low energy effective theory does not

distinguish between compactifications on the sphere and the special saddle-spheres.

7 Conclusions

In this paper, we have provided the dynamics of the physical fluctuations in a wide class

of models, which incorporate the bosonic fields generically present in bulk supergravity

theories — gravity, non-Abelian gauge fields, the dilaton and two-form potential — as well

as dynamical 3-branes. Our final equations ((4.4)–(4.9) and those in appendix B), which

can be considered as a generalization of the analysis in [12], provide the starting point

to construct a 4D effective field theory emerging from various higher dimensional models,

with compactified extra dimensions and/or branes.

We next proceeded with that objective to study the behaviour of braneworlds solutions

in six dimensions, taking as representative the rugbyball compactifications of Einstein-

Yang Mills theory with a cosmological constant (EYMΛ) and certain axi-symmetric warped

compactifications to 6D minimal gauged supergravity; the so-called conical-GGP solutions.
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We have obtained the complete KK spectrum for the 4D spin-2 sector in the conical-GGP

solutions, which is a step towards understanding the behaviour of gravity in codimension

two braneworld models, as for example studied in [36]. The spin-1 and spin-0 sectors

present large systems of coupled differential equations to be solved (five-by-five for the

spin-1 fluctuations, eight-by-eight for the spin-0 fluctuations after truncating the branons),

and we are able to do so in the unwarped cases by developing “rugbyball harmonics”,

in analogy to the spherical harmonics. Along the way, we also recovered some familiar

features of the 5D Randall-Sundrum models. Our main results are summarized in the

previous section.

Previous studies have revealed that codimension-two braneworld compactifications can

evade the traditional KK lore in several ways. For instance, in [6] it was found that the

KK mass-gap can be decoupled from the size of the extra dimensions in the presence of

negative tension branes, in principle allowing not only gravity but also the SM to propa-

gate in large extra dimensions. This phenomenon can also be observed here. We can also

now suggest the following. The power-law warping present in the 6D braneworlds stud-

ied here does not change qualitatively the physics. Moreover, models with only positive

tension codimension-two branes also have qualitatively the same behaviour as traditional

KK compactifications. Meanwhile, the introduction of negative tension codimension-two

branes can lead to surprising dynamics.

As yet another example of how the physics of braneworlds in 6D can counter in-

tuition, we have found — for special saddle-sphere compactifications with deficit angles

δ = −2π,−4π, . . . — three massless vector fields thanks to the presence of three SU(2)

Killing vectors in the internal manifold that are well defined everywhere outside the branes.

Thus we see that infinitesimal isometries are sufficient to imply massless vector fields, even

if they cannot be integrated to genuine isometries. All the massless modes in the models

studied here fall into well-defined representations of the SU(2), although there are massive

KK modes which do not. In this way we see that the massless vectors provide the gauge

fields of an enhanced SU(2) KK gauge symmetry in the classical, low energy, 4D effective

theory obtained by truncating to the massless sector, despite the absence of an SU(2) isom-

etry in the background! Apparently, the low energy theory does not distinguish between a

compactification on the special saddle-spheres and the smooth sphere.

At the same time, as we approach the energy of the KK mass gap and incorporate

the non-zero modes, we see that the SU(2) KK gauge symmetry is broken explicitly to

U(1). This is because only the U(1) is a genuine global continuous isometry of the internal

manifold. The masslessness of the extra massless vector fields is thus not protected by any

symmetry, and should not survive quantum corrections. Meanwhile, reaching energies far

above the KK mass-gap, the full 6D symmetries will be restored as usual. The pattern of

symmetry breaking and emergence that we have found within our classical approximation,

as different energy scales are probed, is thus a novel one.

In the model whose field content and structure corresponds to the bosonic part of 6D

supergravity, the low-energy theory describes the graviton, the three vectors in the adjoint

of SU(2) and two massless scalars that are SU(2) singlets. Whether the above properties

are shared with fermionic modes is not known and their behaviour, though of interest, lies
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beyond the scope of the present paper. Meanwhile, we argued that we expect the zero-mode

truncation to be a consistent one, at least in the aforementioned model once we remove

the brane sources and study a non-compact smooth manifold. We thus note that this

bosonic model is in principle a complete one, sufficient to demonstrate the unconventional

dynamics that we have observed. It would certainly be interesting to check the consistency

also in the presence of branes.

This work concludes our study of the bosonic perturbations in the axi-symmetric brane-

world solutions to 6D supergravity. We may now turn to the fermionic sector.
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A General ξ-dependent bilinear action

Here we give the explicit expression for the biliner action that depends on the fluctuations

of the brane positions ξM , before any gauge fixing, that is the last two terms in (3.5). These

terms have been computed by varying the brane action (2.6) with respect to (3.1) and by

keeping only terms up to the quadratic order. Their explicit expression is the following

S(ξ, ξ) = −T
2

∫

d4x
√−g

[

GMN∂ξ
M · ∂ξN

+
1

2
ξP ξR∂P∂RGMN∂Y

M · ∂Y N + 2ξP ∂PGMN∂ξ
M · ∂Y N

+
1

2
ξP∂PGMN ξR∂RGSQ

(

1

2
∂Y M · ∂Y N∂Y S · ∂Y Q − ∂YM · ∂Y S∂Y N · ∂Y Q

)

+GMNGPR

(

∂ξM · ∂Y N∂ξP · ∂Y R − 2∂ξM · ∂ξP∂Y N · ∂Y R
)

+ξP∂PGMNGRS

(

∂Y M · ∂Y N∂ξR · ∂Y S − 2∂YM · ∂ξR∂Y N · ∂Y S
)

]

, (A.1)

and

S(h, ξ) = −T
2

∫

d4x
√−g

[

ξP∂PhMN∂Y
M · ∂Y N + 2hMN∂ξ

M · ∂Y N

+hMNξ
P∂PGRS

(

1

2
∂Y M · ∂Y N∂Y R · ∂Y S − ∂YM · ∂Y R∂Y N · ∂Y S

)

+hMNGPR

(

∂YM · ∂Y N∂ξP · ∂Y R − 2∂Y M · ∂ξP∂Y N · ∂Y R
)

]

. (A.2)
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The bulk quantities in (A.1) and (A.2), that is the background metric GMN and the

fluctuation hMN , are computed in the background brane position. This is because (A.1)

and (A.2) come from the variation of the brane action (2.6) where the bulk fields are

computed in the brane position.

B Spin-0 bilinear action in the light cone static gauge

Here we provide the spin-0 action in the light cone static gauge defined by (4.1) and (4.3).

This is the only part where the branons ξm appear.

Let us start with the spin-0 action that only depends on the bulk fields. The non

vanishing terms are the following:

S(0)(h, h) = − 1

4κ2

∫

dDX
√
−G
[

∂µhmn∂
µhmn + ∂ρhmn∂ρh

mn + hmn;lh
mn;l

+h2
ρρ(D2A

′B′ + 2A′′) + 2
(

A′′ +A′2)hρρh
i

i
(

D2A
′B′ + 2A′′ − 1

2
B′2 − 2B′′

)

hρmh
m

ρ − 4A′h n
ρ h ;m

mn

+h i
i h

m
m A′B′ + 2

(

B′′ +
B′2

2

)

hρρh
m

m +
1

2
B′2hmnh

mn +
1

2
B′2 (h m

m )2

−2e−Bhm
lh

n
hΩ lh

mn + 2κ2hlmh
l
n

(

1

2
eφ/2F

m
hF

nh +
1

4κ2
∂m φ∂n φ

)

+κ2eφ/2hmnhlhFlmFhn +
1

2

(

∂µh
i

i ∂
µh j

j + ∂ρh
i

i ∂ρh
j

j + h i
i ;mh

j;m
j

)

+
(

h i
i

)2
(

1

2
A′2 +

T

2
κ2
√

g/G δ(Xc − Yc)

)]

, (B.1)

where Ω l
mn h is the Riemann tensor for the metric Kmn and Xc and Yc are defined below

eq. (4.5). We observe that in the last line of (B.1) there is an explicit brane contribution

(the tension of the brane T appears explicitly). Moreover,

S(0)(V, V ) = −1

2

∫

dDX
√
−Geφ/2

[

∂µVm∂
µV m +DmVnD

mV n +

(

−2A′2 +
1

4
φ′2
)

V 2
ρ

+
(

−2A′ + φ′
)

VρDmV
m +RmnVmVn + 2 gFmnVm × Vn

−1

2
φ′VρDmV

m +
1

2
φ′V mDmVρ + κ2eφ/2

(

F
m

l Vm

)

F lnVn

]

, (B.2)

S(0)(h, V ) =

∫

dDX
√
−Geφ/2

[

FnmVm h
;l

ln +
(

DnVm −DmVn

)

h
n

l F lm

−1

2
A′F ρmVmh

i
i +A′FmnVnhmρ

]

, (B.3)
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S(0)(τ, τ) =−
∫

dDX
√
−G

[

1

4κ2
∂Mτ ∂

M τ +
1

2

(

∂2V
∂φ2

+
1

16
eφ/2F 2 +

φ′2

4κ2

)

τ2

]

, (B.4)

S(0)(h, τ) =

∫

dDX
√
−G

{

1

2κ2

[

φ′τ

(

A′hρρ + h ;m
mρ − 1

2
A′h i

i

)

+ hmρ∂mτ φ
′
]

+
1

4
eφ/2Fml F

n
l τ hmn

}

, (B.5)

S(0)(V, τ) =

∫

dDX
√
−Geφ/2

[

1

4
Fmn τ

(

DnVm −DmVn

)

− 1

2
φ′F ρmτVm

]

, (B.6)

S(0)(V2, V2) = − 1

16

∫

dDX
√
−Geφ

{

e−2A∂MVij∂
MVij

−2e−4A−2φ
(

eφ+2AV n
m

)

;n

(

eφ+2AV lm
)

;l

−4V mne−A∂m

[

e−A−φ
(

eφ+2AV l
n

)

;l

]

+∂µVmn∂
µV mn +

1

3
V[nl;m]V

[nl;m] +
κ2

2
γ2eφ/2

(

VmnF
mn
)2
}

, (B.7)

S(0)(V, V2) = −κ
4
γ

∫

dDX
√
−GeφVmnF

mn

[(

A′ +
1

2
φ′
)

Vρ +DlV
l

]

. (B.8)

We have no mixing of the form S(0)(h, V2) and S(0)(τ, V2) as a consequence ofHMNP = 0 (at

the background level). We have checked that the term S(0)(V, V ) reduces, as it should, to

the corresponding action in ref. [9] in the case in which Vm is orthogonal to the background

gauge field.

Let us consider now the branon-dependent action. This turns out to have the following

form:32

S(0)(h, ξ) + S(0)(V, ξ) + S(0)(τ, ξ) + S(0)(ξ, ξ). (B.9)

Therefore, the fields ξm in general couple with some bulk fields, but these mixings are

confined to the spin-0 action. The explicit expressions for the different pieces are

S(0)(h, ξ) = −T
2

∫

d4x
√−g

[

2 ξm
(

A′hρm + h ;n
nm

)

+ e−Aξm∂mhii

]

, (B.10)

S(0)(V, ξ) = Tκ2

∫

d4x
√−g eφ/2F n

m Vn ξ
m, (B.11)

S(0)(τ, ξ) =
T

2

∫

d4x
√−g ξm ∂mφ τ, (B.12)

S(0)(ξ, ξ) = −T
2

∫

d4x
√−g

[

Gmn∂µξ
m ∂µξn +

1

2
ξm∂mgµν ξ

n∂ngησ

(

1

2
gµνgησ − gµηgνσ

)

+
1

2
ξmξn ∂m∂ngµν g

µν + Tκ2
√

g/G δ(Yc − Yc)ξ
mξm

]

. (B.13)

We discuss the various singularities that can be observed in the above in Subsec-

tion 4.2.3 and below.

32The term of the form S(0)(V2, ξ) vanishes as a consequence of HMNP = 0 at the background level,

which in turn follows from our background ansatz.
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C Spin-0 spectrum for 6D supergravity compactification

We finally analyse the (massive) spin-0 fluctuations in 6D braneworlds by using the general

spin-0 action given in appendix B. Here we discard the branons. There are different ways

to make this truncation consistently, e.g. by introducing an orbifold that projects them

out. In ref. [9] such an orbifold has been defined taking into account the presence of at

least two patches in the description of spherical topologies. Here we only use the fact that

the orbifold action in the intersection of the two patches is ϕ → ϕ + π. In the absence of

the branons the δ(0) singularities mentioned in Subsection 4.2.3 obviously disappear. We

shall see that it is also possible to deal with the other type of singularities mentioned there

and extract a finite spectrum.

Here we focus on the unwarped solutions and in particular on the rugbyballs and saddle-

spheres defined in Subsection 2.3. In this case we will be able to generalize the harmonic

analysis developed in Subsection 5.2.2 to the spin-0 sector, which involves 2D tensors as

well as 2D vectors and scalars. This technique allows us to transform complicated coupled

differential equations into algebraic equations whose solutions can be found exactly. The

relevant fluctuations are hmn, Vm, τ , Vij and Vmn, where m and n run over θ and ϕ. We

observe that the fluctuations Vm orthogonal to background gauge field decouple to the

other fields and have already been analyzed in [9]; therefore here we assume Vm to be

parallel to the background gauge field. One should keep in mind that, if the branons are

projected out by the above-mentioned orbifold, only the modes with m even survive (in

the Fourier expansion over eimϕ). The spin-0 action in the light cone gauge assumes the

following form:

S(0)(h, h) = − 1

4κ2

∫

d6X
√
−G

[

∂µhmn∂
µhmn + hmn;lh

mn;l

−2hm
lh

n
hR

lh
mn + κ2hlmh

l
nF

m
hF

nh + κ2hmnhlhFlmFhn

−1

2
h m

m (∂2 +D2)h n
n +

T

2
κ2(h m

m )2
√

g/G δ(X2 − Y2)

]

,

S(0)(V, V ) = −1

2

∫

d6X
√
−G

[

∂µVm∂
µV m + Vm;nV

m;n +
1

2
RVmV

m +
κ2

2
F 2VmV

m

]

,

S(0)(τ, τ) =
1

4κ2

∫

d6X
√
−G

[

τ

(

∂2 +D2 − 4

r20

)

τ

]

,

S(0)(V2, V2) =

∫

d6X
√
−G

[

1

16
Vij(∂

2+D2)Vij +
1

16
Vmn(∂2+D2)V mn−κ2γ2

32
(VmnF

mn)2
]

,

S(0)(h, V ) =

∫

d6X
√
−G

[

−Vn;mh
n

l F lm
]

,

S(0)(h, τ) =
1

8

∫

d6X
√
−GF 2 τ h m

m ,

S(0)(V, τ) =

∫

d6X
√
−G τ

4
Fmn(Vm;n − Vn;m),

S(0)(V, V2) = −κ
4
γ

∫

d6X
√
−GVmnF

mnV ;l
l , (C.1)
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where we have used the light cone gauge relation h i
i + h m

m = 0 in S(0)(h, h) and the

property FmlFn
l = GmnF 2/2 in S(0)(V, V ) and S(0)(h, τ), which is a consequence of (5.20).

We now want to use a technique similar to that explained in the spin-1 sector, in order

to transform the above differential problem into an algebraic one. Note that the method

provided in Subsection 5.2.2 can be already applied to perform this transformation in the

terms S(0)(V, V ), S(0)(τ, τ), S(0)(V2, V2), S
(0)(V, τ) and S(0)(V, V2) as they only involve

2D scalars and 2D vectors.33 What we have done there is to identify appropriate mass-

squared operators from the diagonal part of the bilinear action, which are Hermitian once

the HCs are imposed. In this way we were able to define complete sets of 2D scalar and

vector harmonics. Then we focused on the cases in which the derivative relation, eq. (5.32),

between scalar and vector harmonics holds. That relation is what allowed us to deal with

the derivative couplings between scalars and vectors and transform the spin-1 differential

problem into an algebraic one, which could easily be solved.

Here we generalize the above procedure to include the 2D tensor fluctuations in hmn.

Indeed, hmn can be decomposed into its trace, h m
m , and traceless part, h̃mn ≡ hmn −

Gmnh
l

l /2, so that the first entry in (C.1) decomposes into the two terms:

S(0)(h m
m , h m

m ) =
1

8κ2

∫

d6X
√
−G

[

h m
m

(

∂2 +D2 − κ2

4
F 2

)

h n
n

]

,

S(0)(h̃mn, h̃mn) =
1

4κ2

∫

d6X
√
−G

[

h̃mn

(

∂2 +D2 −R
)

h̃mn
]

, (C.2)

where we used the following identities:

Rpmqn =
R

2
(GpqGmn −GmqGpn), FlmFhn =

F 2

2
(GlhGmn −GmhGln). (C.3)

Observe that h m
m is in fact a 2D scalar field, and we can expand it in terms of the 2D scalar

harmonics found in Subsection 5.1.2. The fluctuations h̃mn are instead genuine 2D tensor

fluctuations, and the appropriate mass-squared operator is −D2 +R. Thus, we would like

to solve the eigenproblem:
(

−D2 +R
)

h̃mn = µ2
T
h̃mn, (C.4)

with the given NCs and HCs, where µ2
T

are the corresponding mass-eigenvalues.

In a general basis, eq. (C.4) is a set of two coupled differential equations (the traceless

property removes one out of the three components of a rank two symmetric tensor in two

dimensions). However, by writing down eq. (C.4) in the ± basis defined in (5.29):

(

−D2 +R
)

h±± = µ2
T
h±±, (C.5)

where we used h±± = h̃±±, and by explicitly evaluating D2h±±, one finds that the equa-

tions for h++ and h−− are decoupled, like those of the h+i and h−i fields in the spin-1

sector. After a long but straightforward calculation we find

− ∂2
θf

±± +
Ḃ

2
∂θf

±± +

(

m2e−B ± 2mḂe−B/2 +
Ḃ2

2
− B̈

2

)

f±± =
r20
4
µ2

T
f±±, (C.6)

33The analysis of the Vmn-EOMs shows that Vmn/
√
−G is a 2D scalar.
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where a dot represents a derivative with respect to θ and f±± is the wave function of h±±,

defined by a KK expansion

h±±(X) =
∑

n,m

h±±nm(x)f±±
nm (θ)eimϕ, with m = generic integer (C.7)

and in (C.6) the KK numbers n and m are understood. The eigenvalues µ2
T

can be found by

using the technique discussed in ref. [6]: one can put the equations into the hypergeometric

form, consider the general solution to the hypergeometric equation and then impose the

HCs and NCs. We find

• For |m|ω ≥ 2

µ2
T

=
4

r20
[(n + |m|ω)(n + |m|ω + 1) − 2] (C.8)

• For −2 < mω < 2

µ2
T

=
4

r20
[(n + 2)(n + 3) − 2] (C.9)

where n = 0, 1, 2, 3, . . . . In this way we have found a complete set of 2D tensor harmonics.

We now remember that, in the spin-1 sector analysed in Subsection 5.2.2, one can

generate the 2D vector harmonics by acting with derivatives over the 2D scalar harmonics

(see eq. (5.32) and the discussion right above). We can imagine that something similar

happens here and the 2D tensor harmonics (C.5) can be generated by acting with derivatives

over 2D vector harmonics. This is indeed the case and in order to see it let us consider the

2D vector harmonics for Vm:
(

−D2 +
R

2

)

Vm = µ2
V
Vm, (C.10)

where µ2
V

are the 2D vector mass-eigenvalues. From now on we shall assume Condi-

tion (5.31), so that µ2
V

= µ2, with µ2 the 2D scalar mass-eigenvalues given in (5.28).

After some manipulation it is easy to show that if Vm satisfies the previous equation then

we also have

−D2Ṽm;n +R(Ṽm;n + Ṽn;m) +
1

2
(R;mVn +R;nVm −GmnR;lV

l) = µ2Ṽm;n, (C.11)

where Ṽm;n ≡ Vm;n−GmnV
;l

l /2. This equation is valid for any unwarped compactification,

but in the rugbyball case it can be simplified. Although the Ricci scalar is not constant

everywhere like in the sphere limit as it contains delta-functions, these additional delta

function terms can be discarded in eq. (C.11) because they are dominated by stronger

singularities,34 which emerge from D2Ṽm;n. This allows us to write (C.11) as follows:

−D2Ṽm;n +Rs(Ṽm;n + Ṽn;m) = µ2Ṽm;n, (C.12)

where Rs is the Ricci scalar of the sphere (Rs = 8/r20), or, in the ± basis,

(

−D2 + 2Rs

)

V±;± = µ2V±;±, (C.13)

34This is a quite generic property of rugbyball compactifications [6, 9].
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where we used V±;± = Ṽ±;±. Now, comparing the eigenproblems for h±± and V±;±,

eqs. (C.5) and (C.13), we see that their eigenfunctions will belong to the same orthog-

onal set provided that:

µ2
T

= µ2 −Rs = µ2 − 8/r20 . (C.14)

By comparing the 2D vector mass-eigenvalues, µ2 given in (5.28), with the 2D tensor

eigenvalues, µ2
T

given in eqs. (C.8) and (C.9), we find that Condition (C.14) is indeed true

in the following cases:

• For m = 0 or |m| ≥ 2/ω, which we denote by 0 6< |m|ω 6< 2, with the constraint

{n,m} 6= {0, 0} , {1, 0}.

• For |m|ω = 1, with the constraint n 6= 0.

• The sphere case (ω = 1), with the constraint {n,m} 6= {0, 0} , {1, 0} , {0,±1}. This

result is in agreement with that obtained by using the Wigner functions [31].

When (C.14) is true a derivative relation between the 2D tensor and 2D vector wave

functions holds:

D±(f±nm(θ)eimϕ) = cT nmf
±±
nm(θ)eimϕ, (C.15)

where cT nm are normalization constants which, having chosen a convenient normalization

for the wave functions, can be fixed to be cT nm =
√

µ2
T nm/

√
2.

It remains to expand the 6D fields in the action (C.1) into their harmonics on

the rugbyball and integrate over the extra dimensions. Thanks to the derivative rela-

tions (5.32), (C.15), and F 2 = const, the mass-squared operator reduces to an algebraic

matrix with constant entries, which can easily be diagonalized. We note that the mass-

matrix turns out to be well-defined despite the singularities mentioned in Subsection 4.2.3.

We end with the resulting spectrum for spin-0 fields (which can be trusted when

eq. (C.14) holds). For definiteness we focus here on the 6D supergravity setup, but there

are no problems in deriving the squared masses in the EYMΛ case as well. We split the

spectrum according to the values of l ≡ n + |m|ω:

• For l = 0
r20
4
M2 = 0, 0, 2, [2]

• For l = 1
r20
4
M2 = 2, 6, [2], [2], [2], [6]

• For l > 1

M2 = µ2
nm with multiplicity 1[+3]

M2 =
4

r20

(

1 +
r20
4
µ2

nm −
√

1 + r20µ
2
nm

)

with multiplicity 1[+1]

M2 =
4

r20

(

1 +
r20
4
µ2

nm +
√

1 + r20µ
2
nm

)

with multiplicity 1[+1]
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where the square brackets denote helicity-0 components of higher spin fields and the re-

maining modes are physical spin-0 fields. We observe that there are neither ghosts nor

tachyons and we recover the two massless fields discussed in Subsection 5.4.2.

As an effective check of the above spectrum we observe that it correctly reduces, when

ω = 1, to the sphere result obtained by directly expanding the bulk fields over the Wigner

functions [27].
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